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ABSTRACT  Despite extensive study, regulation of membrane trafficking is 
incompletely understood. In particular, the specific role of SNARE (Soluble 
NSF Attachment REceptor) proteins for distinct trafficking steps and their 
mechanism of action, beyond the core function in membrane fusion, are still 
elusive. Snap29 is a SNARE protein related to Snap25 that gathered a lot of 
attention in recent years. Here, we review the study of Snap29 and its emerg-
ing involvement in autophagy, a self eating process that is key to cell adapta-
tion to changing environments, and in other trafficking pathways. We also 
discuss Snap29 role in synaptic transmission and in cell division, which might 
extend the repertoire of SNARE-mediated functions. Finally, we present evi-
dence connecting Snap29 to human disease, highlighting the importance of 
Snap29 function in tissue development and homeostasis. 
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INTRODUCTION 
The specialized trafficking routes that evolved between 
compartments of the endomembrane system rely on a 
wide set of proteins, including primarily SNAREs, Rab 
GTPases and a large set of effectors and tethering factors, 
that ensure specificity of cargo delivery to a wide range of 
different target compartments. Precision and fidelity of 
targeting is paramount to support cell viability and to pre-
vent disease. However, how such specificity is achieved at 
a molecular level is incompletely understood.  

SNAREs are part of the conserved coiled-coil machinery 
that brings membranes in close proximity, a prerequisite 
for most membrane fusion events occurring during traffick-
ing [1-3]. A stereotypic set of SNARE proteins forming a 

4-helix bundle (often referred to as trans-SNARE complex) 
composed of distinct SNARE domains named Qa-, Qb-, Qc- 
or R-SNARE are invariantly required for fusion. Usually, a 
Qa-SNARE-containing protein [often called syntaxin, or 
target (t)-SNARE] and a R-SNARE -containing protein [often 
called vesicle associated membrane protein (VAMP) pro-
tein, or v-SNARE] are carried by opposing membranes, 
each providing a SNARE domain to the fusion complex. 
These proteins are glued together by Qb- and Qc-SNARE 
domain containing proteins, providing the remaining 2 
domains (Fig. 1A). After fusion, all proteins of the 4-helix 
bundle are associated to the target membrane, in an ar-
rangement often called cis-SNARE complex, that is disas-
sembled  by  the activity  of a number of proteins  including  
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the ATPase NSF (N-ethylmaleimide-sensitive factor). The 
Qb- and Qc-SNAREs domains can also be contributed in a 
single protein, as is the case of members of the Synapto-
somal-Associated Protein (SNAP) protein family. Snap25 
and Snap23 are the most extensively studied SNAP family 
members (for review [4]). Metazoan genomes further in-
clude Snap29, while the SNAP family in mammals compris-
es also Snap47 [5, 6]. Here, we will focus on Snap29, whose 
functions have increasingly come into view in the last two 
decades.  

Differently from other family members Snap29 possess 
an N-terminal acidic asparagine-proline-phenylalanine 
(NPF) motif. Similarly to Snap47, Snap29 also lacks cysteine 
residues in the spacer region between the two SNARE do-
mains, that in Snap25 and Snap23 are modified to allow 
membrane anchoring [5] (Fig. 1B). Consistent with the lack 
of a membrane anchor, early biochemical studies revealed 
that Snap29 is only partially associated to membranes [5]. 
They also suggested that Snap29 interacts with a wide 
range of syntaxins including Syntaxin6 (Syx6) a SNARE pro-
tein acting in the Golgi apparatus [5, 7, 8]. Despite these 

initial studies, when compared to the advanced under-
standing of Snap25 and Snap23 function, the specificity 
and molecular regulation of Snap29 function remained to 
be explored. Below, we review the growing body of evi-
dence indicating that Snap29 regulates membrane fusion 
at multiple cellular locales during intracellular trafficking. In 
addition, we report findings that indicate that Snap29 
might not only be involved in membrane fusion, but that it 
could rather serve a regulatory or structural role in certain 
contexts. Finally, we discuss the involvement of Snap29 in 
human disease. 
 

ENDOCYTOSIS, RECYCLING AND CILIUM FORMATION 
REQUIRE SNAP29 AND ITS INTERACTOR EHD1  
Together with the NPF interactor EHD1 and with the endo-
cytic adapters AP2, Snap29 was reported to promote en-
dosomal trafficking of the Insulin Growth Factor 1 receptor 
(IGF-1R) in CHO cells, a process crucial to down-regulate 
active receptors [9] (Fig. 2A).  

Biochemical analyses showed that binding of EHD1 to 
the NPF motif of Snap29 can occur alternatively to that of 
the F-BAR protein syndapin II. Upon overexpression in 
HeLa cells, alternative EHD1 and syndapin II interaction to 
Snap29 affected internalization of transferrin receptors 
(TFR) but not of EGFR, suggesting that Snap29 might con-
trol trafficking of selected receptors [10] (Fig. 2B).  

More recently, Snap29 has been shown to participate, 
both in RPE cells and in Danio rerio, in trafficking of ciliary 
vesicles, a process that depends on EHD1, on the recycling 
GTPase Rab11, and on the Golgi apparatus GTPase Rab8 
[11]. The authors suggest that EHD1 is required for vesicle 
formation from preexisting membranes that fuse together 
and assemble in a membrane structure enveloping the 
cilium microtubules (MTs), by the action of Snap29-
containing SNARE complexes (Fig. 2C). Interaction of 
Snap29 with EHD1 was also reported in Drosophila mela-
nogaster [12]. 

FIGURE 1: Illustration of the trans-SNARE complex involved in membrane fusion. All SNARE domains are oriented with the N-termini to 
the left (A). Schematic representation of SNAP family members in mammals (B). The homologous SNARE domains among the 4 paralogs 
are shown. The position of the central glutamine residue (Q) is indicated by a line. The linker region of Snap29 is (purple) differs from that 
of other family members and does not contain a cysteine rich region (CRR; light blue) for membrane targeting.The N-Terminal acidic NPF 
motif, exclusive to Snap29 among family members, is shown in yellow. 

HIGHLIGHTS 
 
• Snap29 regulates endocytosis and recycling by 
   interacting with EHD1. 

• Snap29 is a key regulator of autophagy and assists 
   specialized secretion. 

• Snap29 non canonical activities include regulation 
   of cell division and synaptic transmission. 

• Alteration of Snap29 is observed in congenital, 
   neurological and infectious disease. 
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SNAP29 IS A KEY REGULATOR OF AUTOPHAGY 
Macroautophagy (autophagy here after) is an adaptive 
cellular pathway operating in house-keeping as well as in 
stress conditions. It required for the degradation of dam-
aged organelles, aggregated proteins and other potentially 
toxic waste material. Upon starvation, autophagy is also 
crucial for maintaining sufficient levels of cellular nutrients 

by self-digesting cytoplasmic molecules. Autophagic clear-
ance requires the formation of an intermediate double-
membrane organelle called autophagosome that fully en-
gulfs the cargo before fusion with lysosome (for review 
[13]).  

In 2012, Itakura et al. reported that fusion of starva-
tion-induced autophagosomes with lysosomes in HeLa cells 
requires Syntaxin17 (Syx17), Snap29 and the lysosomal R- 

SNARE Vamp8 [14]. In such work, the authors showed 
that Syx17 is recruited to autophagosomes from the endo-
plasmic reticulum (ER) and that Snap29 primarily associate 
to it, possibly from the cytoplasm. Subsequent characteri-
zation of Syx17 and Snap29 in D. melanogaster revealed a 
similar role in autophagy in vivo [15, 16]. 

The mechanism of Snap29-dependent regulation of au-
tophagy was further dissected in human cells by showing 
that the binary Syx17-Snap29 complex on autophagosomes 
is stabilized by binding of ATG14 oligomers to Syx17. Such 
tethering function is proposed to be crucial for priming the 
complex for fusion with Vamp8 on the lysosomes [17].  

Interestingly, analysis of Caenorhabditis elegans mu-
tants indicated that O-GlcNac modification of Snap29 is 
crucial to regulate autophagic clearance [18]. In fact, in 
both worms and in human cells, it was found that in pres-
ence of high nutrients Snap29 is modified on 4 Serine resi-
dues, thus preventing inclusion in a functional SNARE com-
plex. In contrast, in low nutrient conditions such as starva-
tion, the unmodified Snap29 is readily included in the 4-
helix bundle promoting autophagy and nutrient recovery 
(Fig. 3A).  

Fusion with lysosomes has been further shown to re-
quire the homotypic fusion and protein sorting (HOPS) 
tethering complex that associates with the late endosomal 
GTPase Rab7, both in D. melanogaster and human cells 
[19].  

Fusion and HOPS recruitment is also assisted by the ly-
sosome-associated multiprotein complex named BLOC-1 

FIGURE 2: Roles of Snap29 in endocytosis and recycling. 
Snap29 is required for internalization of the IGF-1R receptor 
(A), for internalization and/or recycling of TFR (B) and for for-
mation of the basal membrane surrounding the cilium microtu-
bules (light blue; C). All these functions are regulated in associa-
tion with the endocytic factor EHD1, which binds the NPF motif 
of Snap29 (see text for details). 

FIGURE 3: The function of Snap29 during autophagy. 
Snap29 associates to Syx17, which is recruited from 
the ER to nascent autophagosomes to regulate their 
fusion with lysosomes, with the help of Atg14 poly-
mers. O-GlcNac modification of Snap29 in high nutrient 
conditions prevent inclusion in an fusion complex (A). 
Fusion involves the HOPS and BORC tethering com-
plexes, Epg5 and Rab7 (B). Snap29, Syx17, Vamp8 and 
the HOPS complex are also used in fusion of mitochon-
drial-derived vesicles with lysosomes (C) (see text for 
details). 
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related complex (BORC) that regulates lysosome position-
ing [20]. An additional factor controlling fusion of autopha-
gosomes with lysosomes is Vici Syndrome Protein EPG5, a 
Rab7 effector that is found to interact with LC3/Lgg-1 in C. 
elegans and human cells to favor formation of the trans-
SNARE complex [21]. In absence of EPG5, inappropriate 
fusion of autophagosomes with early endocytic vesicles is 
shown to occur (Fig. 3B).  

Finally, recent data indicate that Snap29 acts in mem-
brane fusion of Syx17-loaded mitochondrial derived vesi-
cles to lysosomes with the help of the HOPS complex [22] 
(Fig. 3C).  
 

SNAP29 ASSISTS SPECIALIZED SECRETION 
In vivo analyses of C. elegans and D. melanogaster lacking 
Snap29 revealed a wide range of trafficking defects, in ad-
dition to alteration of recycling, lysosomal degradation and 
blocked autophagy. These included a dispersed Golgi mor-
phology, an impairment in Golgi trafficking and secretion, 
and, finally, inappropriate secretion of autophagosomes, 
suggesting that Snap29 acts directly during secretion [16, 
23, 24]. Consistent with this in a yeast two hybrid screen 
and in HeLa cells, it was found that SNAP29 interacts with 
the Golgi apparatus tethering factor COG6 and with the 
Golgi SNAREs Syntaxin5, SYX6 and GS27 [25, 26].  

In HeLa cells, Snap29 has also been directly involved in 
unconventional secretion of the leaderless pro-
inflammatory factor interleukin-1β (IL-1β), which occurs 
upon lysosomal damage [27]. The mode of IL-1β secretion 
is debated, but it has been proposed to involve formation 
of autophagosomes [28, 29]. Lysosomal damage can cause 
proteolytic cleavage activation of IL-1β, leading to binding 

to the receptor TRIM16 residing on the lysosomal mem-
brane. In this way, IL-1β is sequestered within LC3 positive 
sequestration membranes, eventually forming an autopha-
gosome [27]. Depletion of Snap29, Snap23, Syntaxin 3 or 4 
and of the ER-derived R-SNARE Sec22b affect IL-1β secre-
tion, suggesting that autophagosomes containing IL-1β 
might fuse with the plasma membrane through the for-
mation of a variety of SNARE complexes involving such 
SNAREs (Fig. 4A).  

In C. elegans anchor cells, a developmental model of 
cell invasion that relies on secretion of lysosomes to the 
protruding front, depletion of Snap29 or of components of 
the exocyst, a complex involved in targeted exocytosis, has 
been found to inhibit protrusion formation [30]. These 
data suggest that Snap29-mediated fusion might contrib-
ute to promote fusion of lysosomes to the plasma mem-
brane in a highly specialized form of secretion (Fig. 4B).  

A third specialized secretion pathway involving Snap29 
has been recently identified in D. melanogaster [31]. In 
pupal salivary glands, which secrete large amounts of 
granule containing glue, excess granules are cleared by 
lysosomes in a specialized form of autophagy termed 
crynophagy which was found to be lost upon depletion of 
Syx13, Snap29, Vamp7, the GTPase Rab2 and Rab7 and 
components of the HOPS tethering complex (Fig. 4C). 

Finally, Snap29 is particularly abundant in non excitato-
ry cells of the nervous system, such as rat oligodendrocytes 
in culture, especially during myelination [32]. In this study, 
Snap29 was shown to colocalize and interact with the 
GTPase Rab3a via the N-terminal region of Snap29 and 
overexpression of Snap29 and Rab3a is reported to en-
hance cell surface trafficking of tagged myelin components, 

FIGURE 4: Snap29 activity in secre-
tion. Release of the pro-
inflammatory factor IL-1β requires 
fusion to the plasma membrane 
mediated by Snap29 (A). Snap29 
also regulates secretion of lyso-
somes during a developmental cell 
invasion process in C.elegans (B). 
Regulation of secretion of glue gran-
ules in D. melanogaster salivary 
glands involves Snap29, which acts 
in fusion of excess granules to lyso-
somes (C) (see text for details). 
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suggesting that Snap29 might regulate myelin secretion in 
glial cells [32]. Considering that astrocytes and, in particu-
lar, microglia are involved in neuro-inflammation, it might 
be interesting to determine whether specific functions of 
Snap29 in these other types of glia cells exists.  
 

A NON TRAFFICKING ROLE OF SNAP29 POINTS TO A 
NEW MODEL OF OUTER KINETOCHORE FORMATION 
Surprisingly, we have recently found that during cell divi-
sion Snap29 acts as a component of the kinetochore, the 
mitotic structure that connect condensed chromosomes to 
spindle microtubules [33]. In D. melanogaster cells, we 
have observed relocalization of Snap29 to forming kineto-
chores at the onset of mitosis. Importantly, in both 
D. melanogaster and HeLa cells Snap29 depletion affects 
kinetochore formation and chromosome segregation. Elec-
tron microscopic analysis revealed that D. melanogaster 
Snap29 is present at the kinetochore in absence of mem-
brane, suggesting that its association to the kinetochore 
might be independent of trafficking. Interestingly, RZZ, a 
well characterized kinetochore complex, shares compo-
nents with the NRZ tethering complex that assists fusion 
into the ER of vesicles involved in retrograde trafficking of 
cargoes from the Golgi apparatus [34, 35]. Very recently, 
the structure of the RZZ complex has been resolved by 
cryo-electron microscopy and proposed to be similar of 
that of cytosolic coat scaffolds that mediate membrane 
trafficking in association with molecular motors and adapt-
ers [36]. Thus, Snap29 might be part of a set of peripheral 
membrane proteins that are repurposed during cell divi-
sion to mediate interaction of chromosomes with the mi-
crotubule cytoskeleton (Fig. 5A). While Snap29 has been 
found in studies of kinetochore proteins previously [37, 

38], further analysis is required to understand mechanisti-
cally the role of Snap29 at the kinetochore. 
 

SNAP29 FUNCTION IN THE NERVOUS SYSTEM: A NON 
CANONICAL MODE OF ACTION? 
Snap29 was initially identified in immunoprecipitation ex-
periments using rat brain extracts and in a yeast two-
hybrid screen as an interactor of Syntaxin1A (Syx1A), 
which, together with Snap25, regulates synaptic transmis-
sion in neurons [39]. Interestingly, Snap29 was found to be 
able to associate to a reconstituted SNARE complex con-
sisting of Syx1A alone, Syx1A and Snap25, as well as the 
synaptic trimeric complex formed by Syx1A, Snap25 and 
Vamp2. In these experiments, binding of αSNAP, a factor 
necessary for disassembly of the SNARE complex after fu-
sion to Syx1A complexes was weakened by the presence of 
Snap29, suggesting that Snap29 competes with αSNAP for 
binding to Syx1A complexes. However, Snap29 was not 
found to bind directly αSNAP, indicating that in presence of 
Snap29 disassembly of the SNARE complex is prevented 
and that Snap29 is likely to be included in the trimeric 
Syx1A, Snap25, Vamp2 complex. Injection of Snap29 in 
neurons in culture decreased the amplitude of synaptic 
firing, an effect that was reverted by coinjection of increas-
ing amounts of αSNAP [39]. In a subsequent study, the 
same group reported that hippocampal neurons depleted 
of Snap29 show increased efficiency of synaptic transmis-
sion [40]. These studies suggest that Snap29 acts as a 
modulator of synaptic vesicle fusion, perhaps by inhibiting 
complex disassembly or substituting for Snap25 (Fig 5B). 

D. melanogaster Snap29 also associates to the fly 
Syx1A homolog Syx1. The authors showed that Snap29 is 
not included in Snap25-containing cis-SNARE complexes 

FIGURE 5: Non ca-
nonical roles of 
Snap29. Schematic 
representation of 
the function of 
Snap29 at synaptic 
vesicles (A) and at 
the kinetochore (B). 
The comparison in A 
illustrates similarities 
between membrane 
trafficking and the 
membrane-indepen- 
dent process of ki-
netochore for-
mation. The regula-
tory activity of 
SNAP29 during syn-
aptic transmission 
illustrated in B is 
likely to involve 
binding to SNARE 
bundles containing 
SNAP25 (see text for 
details). 
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recovered from fly mutants for the disassembly factor NSF, 
suggesting that Snap29 might be part of unstable SNARE 
complexes [12]. In addition, Snap29 appears unable to 
rescue synaptic vesicle fusion in cultured Snap25-deficient 
neurons, suggesting that it is not functionally redundant 
with Snap25. In contrast, Snap29 is able to rescue, albeit 
very poorly, secretion of dense core vesicles containing 
neurotransmitters, which require prolonged neuron stimu-
lation [41].  

 
SNAP29 AND DISEASE 
Considering the wide involvement of Snap29 in multiple 
trafficking and non trafficking processes in diverse cell 
types, it is not surprising that alteration of Snap29 is asso-
ciated to human disease (Table 1). Here, we review the 
consequences of alteration of human SNAP29 activity and 
we discuss potential mechanisms of pathogenesis. 
 
Could schizophrenia involve an alteration of SNAP29 gene 
activity? 
An association of Snap29 with schizophrenia emerged in 
two early reports that revealed the presence of a polymor-
phism in the promoter region of SNAP29 with schizophre-
nia patients [57, 48]. In addition, a study found the SNAP29 
promoter among the many bound by β-catenin, a tran-
scription factor regulated by lithium, an antipsychotic drug 
[42], and a bioinformatic analysis associated SNAP29 with a 
schizophrenia gene network [43]. While alterations in 
SNAP29 regulation in schizophrenia remain to be demon-
strated, it is interesting to note that dysfunction of synaptic 
transmission has been proposed to be at the core of schiz-
ophrenia pathophysiology [44]. Consistent with the possi-
bility that regulation of SNAP29 gene expression might be 
altered in schizophrenia, SNAP29 has been found among 
the interactors of the schizophrenia susceptibility factor 
dysbindin, a component of the BLOC-1 complex, together 
with the Golgi adapter COG6 and the polarized transport 
molecules AP3, SEC6 and SEC8 in human neuroblast cells 

[45]. Such evidence and that linking Snap29 to secretion 
and synaptic transmission (see previous chapter) suggest 
that Snap29 might act in trafficking processes subverted in 
schizophrenia.  
 
CEDNIK and other rare syndromes are caused by muta-
tions in SNAP29 
A more direct link of Snap29 with disease emerged in 2005. 
Indeed, it was reported that loss of SNAP29 cause CEDNIK 
(cerebral dysgenesis, neuropathy, ichthyosis, and kerato-
derma), a rare recessive congenital syndrome. In CEDNIK 
patients, homozygous SNAP29 loss of function mutations 
cause a typical set of neurocutaneous traits that results in 
very poor life expectancy [46-50]. The alterations due to 
lack of SNAP29 have been analyzed in the stratum 
corneum of skin of patients, which presents an accumula-
tion of glucosylceramides normally secreted towards the 
upper layers, suggesting the existence of a defect in secre-
tion of lamellar granules containing lipids and proteolytic 
enzymes important for normal skin development. Con-
sistent with the role that SNAP29 plays in membrane traf-
ficking, fibroblasts of CEDNIK patient possess aberrant 
morphology of the Golgi apparatus and of recycling endo-
somes, as well as defects in Golgi trafficking, endocytic 
recycling and cell motility, overall suggesting that altera-
tion of these process might contribute to the pathogenesis 
of CEDNIK [51]. 

Patients affected by a 22q11.2 deletion syndrome 
(22q11.2DS), a relatively common micro-deletion of the 
region that includes the SNAP29 gene, present a wide 
range of phenotypic abnormalities including immunodefi-
ciency, palatal anomalies, congenital cardiovascular defects 
and additional symptoms varying from patient to patient. 
An exome study of 22q11.2 deletion syndrome patients 
revealed novel mutations in the remaining copy of SNAP29, 
suggesting that hemizygous mutations might unmask a 
recessive CEDNIK-like condition contributing to the pheno-
typic variety of patients [52]. A similar scenario could apply 

Table 1. List of diseases with proven alterations in SNAP29 (see text for details). 

Disease Traits/Symptoms SNAP29 
involvement 

Pathological 
mechanisms 

References 

Schizophrenia Cognitive and emotive 
dysfunction 

Polymorphism in 
promoter region 

Altered polarized 
transport in 
neurons? 

[42-45] 

CEDNIK Congenital 
neuroectodermal defects 

Loss of function 
mutations 

Likely multiple [46-51] 

22q11.2DS Mild to CEDNIK-like Hemizigous 
mutations 

Likely multiple [52] 

22q11.2 duplication  
(2 patients) 

Ocular manifestations/Mild 
mental retardation and 
muscular hypotonia 

Trisomy Unknown [53, 54] 

HPIV3 infection Infantile brochiolitis and 
pneumonia 

Binding of inhibitory 
Phosphoprotein P 

Decreased 
autophagy 

[55] 

EV-A71 infection Hand, foot, and mouth 
disease 

Binding to VP0 and 
2BC proteins 

Increased 
autophagy 

[56] 
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to a patient affected by a uncommon form of 22q11.2DS 
[59], and to Di George syndrome, a rare multi-systemic 
condition also caused by heterozygous de novo deletions 
of the 22q11.2 region, which contains SNAP29 and other 
30-40 genes [60].  

Finally, duplications in the region containing SNAP29 
have been found in 2 patients with congenital ocular, vas-
cular and cranial nerve defects [53] and in 1 patient with 
mild facial dysmorphism and motor and intellectual delay 
[54]. Overall, multiple congenital defects are associated to 
SNAP29 alterations. However, given the pleiotropy of 
SNAP29 activity, the contribution of altered SNAP29 activi-
ty to the traits of these diseases appear complex and re-
quires further examination. 
 
Infection is regulated by SNAP29 activity  
The utmost importance of SNAP29 for regulation of fusion 
between autophagosomes and lysosomes is underscored 
by the finding that the capsid phosphoprotein P of human 
para influenza virus type 3 (HPIV3) is able to bind both 
SNAP29 SNARE domains. This interaction prevents binding 
of SNAP29 with SYX17, possibly preventing the formation 
of the ternary SNARE complex with VAMP8, required for 
autophagosome degradation. Since the accumulation of 
autophagosomes within the host cell is a prerequisite for 
virus particle release in the extracellular space, the study 
suggests that SNAP29 activity is a key factor to prevent 
HPIV3 infection [55].  

The association of Snap29 with viral infection is not lim-
ited to HPIV3. In fact, a recent report showed that SNAP29 
binds a structural protein of the enterovirus-A71 (EV-A71), 
which appear to up regulate autophagy for its replication 
[56]. While the mechanism of SNAP29 regulation of EV-A71 
is not yet clear, these two papers and the emerging notion 
that subversion of autophagy is a key step in the life cycle 
of viruses [61-63], indicates that SNAP29 might be a crucial 
factor to prevent virus infection.  

The activity of SNAP29 to prevent infection is also po-
tentially relevant to bacterial pathogens. Indeed, in mouse 
mast cells, an immune cell type specialized in clearing bac-
terial infections, Snap29 associates to E. coli containing 
phagosomes and its overexpression increases lysosomal 
clearance, suggesting that Snap29 assists antibacterial 
phagocytosis [64].  

The pleiotropy of Snap29 activity and the massive in-
crease in -omics approaches suggests that further associa-
tion of Snap29 with common and rare disease might 
emerge. Considering the activities of Snap29 in processes 
associated to signal transduction, cell motility, cell division, 
autophagy and synaptic transmission, we predict an in-
volvement in tumorigenesis and neurodegeneration.  
 

CONCLUSION 
In the 20 years after Snap29 discovery, multiple studies 
have revealed a wide range of cellular processes controlled 
by the SNARE. Despite this, a number of outstanding ques-
tion regarding the detailed mechanism of Snap29 remain 
unanswered. Here, we list some of the most outstanding.  

1. As is the case of its paralog Snap23, Snap29 activity is 
not restricted a limited set of cellular locales. However, the 
mode of Snap29 targeting to membrane compartments 
appears radically different from that of Snap23 (and of 
Snap25), given the absence of the cysteine rich region and 
the charged amino acids that regulate membrane associa-
tion [65]. One factor that could regulate targeting of 
Snap29, at least during endocytic recycling is its interactor 
EHD1. However, how Snap29 is recruited to membranes 
during other trafficking processes remains to be under-
stood.  

2. So far the only reported post-translational modifica-
tion of Snap29 is a O-GlcNac modification thought to regu-
late its activity during autophagy [18]. Whether such modi-
fication affects other Snap29 functions is not understood 
and it remains to be determined whether other modifica-
tions might control Snap29 function.  

3. How Snap29 acts in the SNARE complex is not entire-
ly clear. While Snap29 appear to act positively in mem-
brane fusion in multiple context, the inclusion of Snap29 in 
a 4-helix bundle has been demonstrated in vitro by X-ray 
crystallography only using its SNARE domains in separated 
form [17]. The parallel orientation (N- to C- terminal) of 
each SNARE domain in the bundle posits that the linker 
region between the SNARE domains of Snap29 has to be 
disordered as that of Snap25 or Snap23. This possibility has 
not been yet tested. 

4. Whether the 1st SNARE domain of Snap29 corre-
sponds to a Qb and the 2nd to a Qc is also not clear and 
has been inferred mostly by analogy with Snap25 and 
Snap23. A large number of bundles employ 4 SNARE pro-
teins, rather than 3, each carrying a SNARE domain. Thus, if 
the linker region of Snap29 was rigid enough to prevent 
inclusion of Snap29 in a single bundle, the paradigm of 
activity based on that of Snap25 would have to be revised. 
One interesting, albeit currently only theoretical, possibility 
is that Snap29 could tether multiple SNARE complexes by 
lending the 1st SNARE domain to a complex and the 2nd to 
the next. In this scenario, multiple identical bundles could 
be tethered without violating the Qa-, Qb-, Qc- R-SNARE 
rule of bundle formation.  

5. Clarity on the molecular nature of the complexed 
formed by Snap29 will also aid to understand its role in 
synaptic transmission, which is likely relevant to the patho-
genesis of CEDNIK and perhaps Schizophrenia. As explained 
above, Snap29 seems to play a regulatory role in neurons. 
Whether this is due to it being a competitor of Snap25 that 
is less efficient in membrane fusion, or whether Snap29 
plays an inhibitory role in synaptic transmission remains to 
be determined. Interestingly, inhibitory SNAREs have been 
described [66] and the cytoplasmic localization of Snap29 
could allow recruitment to SNAREs to regulate their availa-
bility to form a canonical bundle engaged in fusion. Both 
scenarios are consistent with the reported propensity of 
Snap29 to loosely associate to other SNAREs [12, 67, 68]. 

Remarkably, the yeast S. cerevisiae possesses two SNAP 
family members Sec9 and Spo20, the latter specifically 
required during meiosis to connect the prospore mem-
brane to forming gametes during ascospore morphogene-
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sis [69]. Such event involves the enveloping of haploid nu-
clei by a double membrane, to form spores morphological-
ly similar to autophagosomes. Similar to the case of Snap25 
and Snap29, molecular dissection in vitro of Sec9 and 
Spo20 revealed that the former is a more active and more 
tightly bound to partner SNAREs [70]. While the evolution-
ary relationships between the yeast and metazoan SNAP 
family members are not clear, it is tantalizing to speculate 
that Snap29 might be a metazoan evolutionary solution to 
a common eukaryotic necessity to diversify SNAP protein 
activity, to accommodate cell trafficking and, perhaps, non 
trafficking needs.  
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