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ABSTRACT  Mitochondrial bioenergetics require the coordination of two dif-
ferent and independent genomes. Mutations in either genome will affect mi-
tochondrial functionality and produce different sources of cellular stress. De-
pending on the kind of defect and stress, different tissues and organs will be 
affected, leading to diverse pathological conditions. There is no curative ther-
apy for mitochondrial diseases, nevertheless, there are strategies described 
that fight the various stress forms caused by the malfunctioning organelles. 
Here, we will revise the main kinds of stress generated by mutations in mito-
chondrial genes and outline several ways of fighting this stress. 
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MITOCHONDRIA AND CELL METABOLISM 
Mitochondria play a pivotal role in eukaryotic metabolism. 
They catabolise redox equivalents, derived from nutrient 
uptake, and use them to provide the bulk of cellular energy 
in the form of ATP. The oxidative phosphorylation system 
(OXPHOS) is responsible for this energy production and it is 
composed of five multi-oligomeric complexes present in 
the inner mitochondrial membrane. Transfer of electrons 
through complexes I to IV reduce molecular oxygen to wa-
ter. This process is coupled to proton pumping from the 
matrix to the intermembrane space (IMS), while the return 
of protons to the matrix through the F1Fo ATPase gener-
ates ATP [1]. However, an inefficient flow of electrons 
through the respiratory chain complexes would partially 
reduce oxygen and produce reactive oxygen species (ROS) 

like superoxide and hydrogen peroxide. At low concentra-
tions, these molecules act as second messengers and can 
activate gene transcription and trigger cellular responses, 
like cellular growth, production of cellular antioxidants or 
stimulation of mitochondrial biogenesis [2, 3]. However, 
once a certain threshold is exceeded, these molecules may 
incite oxidative damage in the form of mitochondrial DNA 
(mtDNA) alterations or lipid peroxidation, generating cellu-
lar stress that leads to aging or cell death.   

In addition, mitochondria are involved in many other 
key cellular functions. Dissipation of the proton gradient by 
uncoupling proteins (UCPs) generates heat instead of en-
ergy and this plays an important role in exposure to cold or 
hibernation [4]. Calcium (Ca2+) uptake inside mitochondria 
is mediated by the mitochondrial calcium uniporter (MCU). 
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LHON – Leber’s hereditary optic 
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mt - mitochondrial 
OXPHOS – oxidative phosphorylation, 
ROS – reactive oxygen species. 
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Although the complex has a low affinity for Ca2+, the 
transport takes place due to the high concentration of Ca2+ 
(>10 µM) present in micro domains located in the contact 
sites between endoplasmic reticulum (ER) and mitochon-
dria [5]. The mitochondrial Ca2+ uptake not only shapes the 
cytosolic Ca2+ dynamics, which is crucial for muscle con-
traction, exocytosis and gene transcription, but also modu-
lates at least three dehydrogenases of the Krebs cycle, thus 
regulating energy metabolism. Finally, Ca2+ overload in 
mitochondria regulates apoptosis due to formation of the 
permeable transition pore (PTP) and release of cytochrome 
c from the IMS [6]. Mitochondria are involved in the bio-
genesis and maturation of different cofactors, like heme, 
biotin or iron-sulfur (Fe/S) clusters. Despite the chemical 
simplicity of Fe/s clusters, their biosynthesis requires more 
than two dozen proteins in eukaryotes and takes place 
both in mitochondria and the cytosol [7]. Alterations in 
these mechanisms are linked to severe neurodegenerative, 
metabolic or haematological diseases [8]. 

Since mitochondria take part in many different meta-
bolic processes, mitochondrial malfunction can affect nu-
merous aspects of the cell. As a consequence, various 
forms of cellular stress are generated, leading to a large 
variety of pathological conditions. Here, we review differ-
ent forms of cellular stress caused by mitochondrial mal-
function and the strategies used to fight this stress.  

 

MITOCHONDRIAL DEFECTS 
Mitochondria have retained their own genome, the mtDNA. 
This small, circular, double-stranded DNA is located in the 
mitochondrial matrix in all cell types, and can be found 
with copy numbers that range from several to thousands of 
copies. In human, the mtDNA encodes 13 polypeptides of 
the respiratory chain, as well as for part of the translation 
machinery, required for the synthesis of these polypep-
tides within mitochondria: two ribosomal RNAs (mt-rRNAs) 
and 22 transfer RNAs (mt-tRNAs) [9]. The remaining mito-
chondrial proteins (approx. 99%) are encoded in the nucle-
us, synthesized on the cytosolic ribosomes and imported 
into mitochondria. Therefore, we will distinguish between 
mitochondrial malfunction caused by mutations in the 
mtDNA and those caused by mutations of nuclear genes 
encoding mitochondrial proteins.  

 
Alterations in the mtDNA 
Some features of mtDNA make it especially sensitive to 
oxidative damage and mutation. Firstly, mtDNA has no 
introns, so every single nucleotide carries information es-
sential for protein coding; mtDNA is naked, there are no 
histone proteins protecting it from damage; and although 
DNA repair systems do exist in mitochondria, their mecha-
nisms and extent are poorly understood [10], therefore 
mutations usually remain and are transmitted to the next 
generation until they are removed by selection [11]. More-
over, the proximity to the respiratory chain, a ROS produc-
ing source, increases the risk of potential damage. For all 
these reasons, the mutational rate of the mitochondrial 

genome is much higher than that of the nuclear ge-
nome[12].   

Pathological changes in the mtDNA can appear as point 
mutations in protein coding sequences, mt-tRNAs or even 
mt-rRNAs. In addition, major rearrangements of mtDNA, 
like deletions or insertions/duplications, are a cause of 
disease. Due to the fact that every cell contains a variable 
number of mtDNA molecules, mutations can be present in 
homoplasmy (all copies share the same mtDNA genotype) 
or heteroplasmy (only a population of DNA is mutated). 
The level of heteroplasmy of a mutation is a critical deter-
minant of the cellular stress of a certain tissue or organ and 
has a major role in the disease phenotype. Finally, a reduc-
tion of mtDNA copies (depletion syndrome) can also ham-
per energy production and generate cellular stress (see 
Table 1, Figure 1) [12]. 

 
Alterations in the mitochondrial proteins encoded in the 
nucleus 
Due to the diverse cellular roles that mitochondria fulfill, 
there are many mitochondrial processes that cause a pa-
thology when disturbed. In the last years, massive se-
quencing approaches have significantly increased the 
number of known mutations implicated in mitochondrial 
diseases. Examples of this are defects in: factors involved in 
the biogenesis or integrity of respiratory chain complexes, 
those that regulate mtDNA maintenance, proteins required 
for transcription of mt-mRNA elements involved in transla-
tion of mtDNA encoded proteins, regulators of lipid me-
tabolism, factors involved in cellular signalling and even 
enzymes of the Krebs cycle (see Table 2). 
 

CELLULAR EFFECTS ON DIFFERENT TISSUES 
Typically, mitochondrial disorders have been divided be-
tween those presenting with multiple symptoms, usually 
known as syndromes, and those characterized by tissue 
specific phenotypes. It remains to be addressed, which 
factors determine the tissue-specificity of mitochondrial 
diseases. However, to better address the different kinds of 
stress caused by mitochondrial distress, we will describe 
them classified by tissues/organs and give some examples 
of alterations that cause these problems. 
 
Sensory organs  
Hearing loss is one of the most prevalent sensory disorders 
[61]. Genetic factors are thought to account for more than 
half of congenital and childhood-onset hearing loss, includ-
ing mutations in mtDNA [62] and mitochondrial nuclear 
genes like the heme A biogenesis factor COX10 [63, 64] or 
the AAA protease responsible for complex III assembly 
BSC1L [65, 66].  

Mutations in the 12S mt-rRNA (m.1555A>G and m.1494 
C>T) have been associated with aminoglycoside-induced 
ototoxicity and mitochondrial non-syndromic hearing loss. 
Studies using mitochondrial cybrids derived from Hela cells 
and lymphoblasts have shown that these mutations affect 
the integrity and fidelity of the mitochondrial ribosome, 
therefore   causing   decreased   mitochondrial   translation,  
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either in the presence or the absence of aminoglycosides, 
and resulting in a cell growth defect [67, 68]. However, a 
study using osteosarcoma 143B derived cybrids showed no 
effect on mitochondrial translation after aminoglycoside 
treatment [69]. This discrepancy, the phenotypic differ-
ences between asymptomatic relatives and patients all 
harbouring the same mutational load and the fact that only 
in some cases the defect arose upon antibiotic treatment, 
raised the search for modifying factors of aminoglycoside 
induced ototoxicity within the nuclear genetic background 
[70]. Indeed, no negative effect was observed after amino-
glycoside treatment in primate cells from the Cercophiteci-
ade family where the m.1494 C>T was fixed as the wild-
type allele and cells carried a compensating mutation in 
mitochondrial ribosomal protein S12 (MRPS12) [71], 
whereas  primate cells from orangutan carrying the 
m.1555A>G mutation and no MRP mutation showed a 
drastic effect after antibiotic treatment [72]. In addition, 
this biochemical effect has been linked to stress signalling. 
Cybrids carrying the m.1555A>G mutation showed hyper-
methylation of the mitochondrial ribosome, disturbed mi-

tochondrial translation and assembly of the respiratory 
chain, resulting in increased production of ROS. Enhanced 
superoxide levels are sensed by AMPK, which signals fur-
ther to E2F1, activating pro-apoptotic signalling in the cell. 
This induction seems to be tissue-specific, happens mainly 
in the inner ear and may explain the specific hearing defect 
observed in the presence of this particular mutation [73] 
(see Table 1). 

Eye complications are also frequently found to be asso-
ciated with mitochondrial dysfunction [74] and can be di-
vided into primary and secondary. Primary afflictions are 
caused by genetic defects, whereas secondary afflictions 
are produce by hypertensive angiopathy of the retinal ar-
teries, or diabetic retinopathy in mitochondrial diseases 
with diabetes [75]. Mitochondrial optic neuropathies have 
been associated with mutations in mtDNA and in nuclear 
genes. The most frequent eye disorder due to mtDNA mu-
tation is Leber´s hereditary optic neuropathy (LHON) [76]. 
LHON usually affects young male adults and is character-
ised by mostly bilateral subacute or acute, painless, loss of 
central vision, with decreased colour vision [77]. There are 

FIGURE 1: Mitochondrial dysfunctions are related to mutations in mtDNA and defects in nuclear encoded mitochondrial proteins. (I) 
Overview of mutations within the mtDNA. (II) The majority of mitochondrial defects based on a malfuntion of OXPHOS complexes and 
mitochondrial translation. (III) Defects in other processes, like mitochondrial fusion and fission or lipid homeostasis, leads to different 
mitochondrial diseaes. (IV) Different strategies to figth the diverse forms of mitochondrial stress. (a: Leigh Syndrome LS; b: Leber Heredi-
tary Optic Neuropathy LHON; c: Neurogenic Muscle Weakness, Ataxia and Retinitis Pigmentosa NARP; d: Mitochondrial Encephalomyopa-
thy, Lactid Acidosis and Stroke-like Episodes MELAS; e: Myoclonic Epilepsy and Ragged Red Fiber Disease MERRF; f: Sensorineural Hearing 

Loss SNHL; g: mitochondrial non-syndromic Hearing Loss; : Kearns Sayre Syndrome KSS). 
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three main mtDNA mutations that underly the majority of 
LHON cases and all of them are found in complex I genes: 
m.11778G > A in the ND4 gene, m.3460G > A in the ND1 
gene, and m.14484T > C in the ND6 gene (see Table 1). In 
addition, these mutations are usually present in homo-
plasmy, indicating that probably other factors are involved 
in the development of the disorder. The molecular mecha-
nisms underlying LHON are not yet fully understood. There 
have been some risks factors proposed, like specific mito-
chondrial haplogroups, smoking, alcohol consumption, and 
the use of some antibiotics. Differences in mitochondrial 

mass have been also postulated to play a role in the in-
complete manifestation of the disease. LHON mutation 
carriers with no pathological phenotype have significantly 
higher mtDNA copy number in leukocytes than affected 
carriers. By comparing fibroblasts from unaffected and 
affected mutation carriers, along with controls, it was 
shown that unaffected carriers have increased mitochon-
drial transcripts, respiratory chain proteins and enzyme 
activities compared to controls and affected carriers. 
Therefore, increased mitochondrial mass may play a pro-
tective role in LHON and compensate for complex I dys-

TABLE 1. Types of mitochondrial disease caused by mitochondrial encoded genes. 
 

Mitochondrial defects - mitochondrial encoded (mtDNA) [60] 

Disease Coding Mutation Reference 

Kearns Sayre Syndrome (KSS)  ND3, ND4, ND4L, ND5, COX3, 
ATP6, ATP8, tRNALeu, tRNASer, tRNAHis, 

tRNAArg, tRNAGly, tRNALys 

4977 

(5 kb deletion) 

[13, 14] 

Leigh Syndrome (LS) 
 

ATP6 
m.8993T>C [15] 
m.9176T>G [16] 

ND3 m.10158T>C [17-19] 

ND4 m.11777C>A [20, 21] 

ND5 m.12706T>C [22] 

ND6 
m.14459G>A [23, 24] 
m.14487T>C [25, 26] 

Leber Hereditary Optic Neuropathy 
(LHON) 

ND4 m.11778G>A [27] 

ND1 m.3460G>A [28, 29] 

ND6 m.14484T>C [30-32] 

Neurogenic Muscle Weakness, Ataxia 
and Retinitis Pigmentosa (NARP) 

ATP6 m.8993T>G [33, 34] 

Mitochondrial Encephalomyopathy, 
Lactid Acidosis and Stroke-like Epi-
sodes (MELAS) 

ND1 m.3697C>A [35] 

ND5 
m.13513G>A [36] 
m.13514A>G [37] 

tRNAPhe m.583G>A [38, 39] 

tRNALeu (UUR) 
m.3243A>G [40] 
m.3256C>T [41, 42] 
m.3271T>C [43-45] 
m.3291T>C [46] 

tRNAGln m.4332G>A [47] 

Myoclonic Epilepsy and Ragged Red 
Fiber Disease (MERRF) 

tRNALys m.8344A>G [48, 49] 
m.8356T>C [50-52] 
m.8363G>A [53] 

Sensorineural Hearing Loss (SNHL) tRNASer m.7445A>G [54] 
m.7511T>C [55] 

Deafness (DEAF) 12s rRNA m.1494C>T [56] 
m.1555A>G [57-59] 
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function [78]. In addition, males seem to be more affected 
because of the lack of protective effects from estrogen. 
Indeed, a study using cybrids carrying LHON mtDNA muta-
tions showed that the addition of estradiol increased mito-
chondrial biogenesis and decreased ROS production by 
enhancing the activity of detoxifying enzymes like SOD2, 
leading to a decrease in apoptosis [79] (see Table 1).  

The most common eye afflictions associated with nDNA 
mutations are autosomal dominant optic atrophy (ADOA), 
most frequently due to mutations in the Dynamin-like 
GTPase OPA1, and autosomal recessive optic atrophy 
(AROA), which has been mainly associated with mutations 
in the aconitate hydratase ACO2, or the uncharacterised 
transmembrane protein TMEM126A (OPA7) [76]. ADOA is 
clinically characterised by bilaterally symmetric progressive 
deterioration of the central visual acuity. Approximately 
60-70% of ADOA cases are caused by genetic alterations in 
OPA1, other genes implicated in this pathology are OPA2 
[80], OPA3 [81], OPA4 [82], OPA5 [83], OPA8 [84] and 
WFS1 [85] (see Table 1). OPA1 is a protein with eight dif-
ferent isoforms, processed by the mitochondrial metal-
lochaperones YME1L and OMA1 [86-88]. The best-known 
function of OPA1 is for inner mitochondrial fusion during 
mitochondrial dynamics. In addition, OPA1 is involved in 
the remodelling of cristae by tethering inter-cristae mem-
branes and proper function of the protein is required for 
maintaining cristae structure [89]. OPA1 mutations cause 
defective mitochondrial fusion and altered cristae struc-
ture, leading to direct effects on mitochondrial bioenerget-
ics, including a decreased mitochondrial membrane poten-
tial and ATP synthesis and increased ROS production [90]. 
Interestingly, deletion of YME1L in murine heart, which 
alters OPA1 processing and function in a tissue-specific 
way, causes dilated cardiomyopathy (Figure 1) [91]. 

AROA presents with progressive impairment of visual 
capacity. The defect could either be spontaneously recov-
ered or may lead to bilateral and progressive blindness [77]. 
Mutations in ACO2, affect the mitochondrial tricarboxylic 
acid cycle and therefore mitochondrial energy supply is 
depleted in patients [92]. Although there have been sever-
al AROA patients with mutations in TMEM126A, the exact 
function of the protein and therefore the molecular mech-
anism underlying optic atrophy has yet to be determined 
[93-95]. 
 
Heart  
Cardiac muscle has a high energetic demand, therefore 
cardiac complications are frequent among mitochondrial 
diseases. One of the most common cardiac afflictions pre-
sent in these pathologies is cardiomyopathy, which is esti-
mated to occur in 20-40% of children with mitochondrial 
disease [4, 96, 97]. However, other symptoms like ar-
rhythmia, conduction defects, pulmonary hypertension, 
dilated aortic root, pericardial effusion or coronary heart 
disease can also be developed as consequence of mito-
chondrial malfunction [5, 98].   

Mitochondrial cardiomyopathies are characterised by 
abnormal myocardial structure or function that results 
from genetic defects that impair the mitochondrial respira-

tory chain [6, 98]. Hypertrophic cardiomyopathy is the 
most common form, present in more than 50% of cases [7, 
96], but other forms, like dilated, restrictive, histiocytoid 
and left ventricular non-compactation cardiomyopathies 
can also be found among these patients [8, 99].  

As described before (see above), genetic defects affect-
ing the integrity of respiratory chain complexes, mitochon-
drial translation, maintenance of mtDNA, lipid metabolism 
and other metabolic pathways inside mitochondria might 
lead to cardiac disease. Several important perturbations 
have been described in subunits or factors required for the 
proper assembly of respiratory chain complexes. In general, 
mutations in these proteins cause an impairment of respi-
ration and ATP production, increased ROS production and 
finally, cellular stress derived from a bioenergetics impair-
ment. To date, pathological mutations have been found in 
26 structural subunits of complex I [9, 100] , that together 
with mutations in assembly factors represent around 30% 
of childhood mitochondrial diseases [11, 101]. Complex I 
defects can be present with isolated cardiomyopathy or 
together with multi-organic failure. Mutations in subunits 
of complex II or III have also been associated with different 
types of cardiomyopathy [12, 102-104]. Of special interest 
are defects of the cytochrome c oxidase, caused by muta-
tions in assembly factors and in nuclear-encoded structural 
subunits. Mutations in the complex IV assembly factors 
COX10 and COX15 have been associated with hypertrophic 
cardiomyopathy [16, 105]. Both assembly factors are in-
volved in the biosynthesis of heme A, the prosthetic group 
of the cytochrome c oxidase. Mutations in COX6B1, have 
been associated with cardiomyopathy and encephalopathy 
and showed decreased levels of the mature cytochrome c 
oxidase complex in patient-derived tissues and cells [12, 
106, 107]. Although COX6B1 was thought to be a loosely 
interacting structural subunit of complex IV, studies have 
postulated Cox12 (yeast homolog of COX6B1) to be in-
volved in the delivery of copper to Cox2, together with 
other metallochaperones like Sco1, Sco2 and Coa6 [61, 
108]. Indeed, mutations in human SCO2 have been mainly 
associated with cardioencephalopathy [62, 109-111], 
whereas mutations in SCO1 have been associated with 
hepatic failure and encephalopathy [67, 68, 112, 113], as 
well as cardiomyopathy [64, 114]. Both proteins contain a 
CXXXC that is able to coordinate copper. They bind to apo-
COX2 and deliver two copper atoms to the CuA center. 
Both enzymes have different but cooperative functions and 
disruptions in their function impair the maturation of cyto-
chrome c oxidase[70, 115]. In addition, the SCO1 and SCO2 
proteins are involved in regulating cellular copper homeo-
stasis [71, 116]. Recently, it has been shown that SCO1 
keeps the copper transporter CTR1 in the plasma mem-
brane, this function being essential for the development of 
adult myocardium in mice [72, 117]. Mutations in COA6 
have been described in infants with hypertrophic cardio-
myopathy and combined complex I and IV, or isolated 
complex IV deficiency in the heart [73, 118, 119]. COA6 is 
required for cytochrome c oxidase assembly [74, 120, 121]. 
It is involved in the insertion of copper into COX2 and it has 
been described to interact with SCO2 [75, 122] and SCO1 
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[76, 123] after the translocation of the COX2 C-terminal 
domain into the IMS by COX18 [124]. However, why dis-
turbance of copper metabolism, or ultimately of the cyto-
chrome c oxidase, specifically affects the heart remains 
unclear (see Table 2, Figure 1). 

Mutations in the mitochondrial translation machinery 
have also been associated with cardiomyopathy. Primary 
defects produce a decreased synthesis of mitochondrial 
polypeptides, but ultimately also impair mitochondrial 
bioenergetics and cause cellular stress. Mutations in the 
16S mt-rRNA, and the m.1555A>G mutation in the 12S mt-
rRNA, have been associated with hypertrophic and restric-
tive cardiomyopathy [78, 125, 126]. Mutations in ribosomal 
proteins (MRPL3 and MRPL44) and the translation elonga-
tion factor (TSFM) can cause cardiomyopathy, together 
with multi-organic disease [79, 127-130]. Finally, defects in 
mitochondrial tRNAs can be linked to isolated cardiomyo-
pathy or multi-organic disfunction [131-133] (see Table 1 
and Table 2). 

Alterations of lipid metabolism inside mitochondria can 
also be a determinant for cardiac disease. Barth syndrome 
is an x-linked autosomal recessive disease, characterized 
by cardiomyopathy, skeletal myopathy, neutropenia, 
growth retardation, and 3-methylglutaconic acidurea [80, 
134-136]. This disorder is caused by mutations in the Ta-
fazzin protein, TAZ1, a mitochondrial acyl-transferase in-
volved in the biogenesis of cardiolipin (CL), a phospholipid 
almost exclusively found in the inner mitochondrial mem-
brane [81, 137]. The adequate presence of CL is required 
for structural stability of many critical protein complexes in 
the mitochondrial membrane and it is therefore essential 
for many mitochondrial processes ranging from protein 
import, cristae morphology, function of the respiratory 
chain or cell stress signaling [82, 136]. Interestingly, oxida-
tion of CL causes loss of interaction with cytochrome c, a 
pre-requisite for triggering apoptosis. Oxidized CL has been 
found to be involved in the opening of the mitochondrial 
permeability transition pore (MPTP). In addition, CL is ex-
posed to the outer mitochondrial membrane during apop-
tosis, where it is used as a binding platform for pro-
apoptotic factors. Therefore, CL homeostasis plays an im-
portant role in cardiomyocyte programmed death upon 
ischaemia or reperfusion (Figure 1) [83, 136].  

Mutations in another lipid related enzme, the acylglyc-
erol kinase AGK, have been associated with hypertrophic 
cardiomyopathy, myopathy, cataracts, exercise intolerance 
and lactic acidosis (Sengers syndrome). AGK was recently 
described as a component of the carrier protein trans-
locase of the inner membrane (TIM22) [84, 138, 139], 
meaning that a defective import of carrier proteins alters 
mitochondrial metabolism and may disturb the function of 
the heart. 

 
Neurological disorders 
Similar to previously described organs and tissues and due 
to the high energy demands, neurological complications 
are commonly linked to mitochondrial disfunction. Indeed, 
some of the most known mitochondrial syndromes caused 
by abnormalities in the mtDNA present with drastic neuro-

logical symptoms: Kearns–Sayre syndrome (KSS), a multi-
system disorder with progressive external ophthalmoplegia, 
pigmentary retinopathy, heart block and frequently other 
signs like ataxia, dementia or endocrine problems is associ-
ated with single deletions of mtDNA [140]. MELAS (Mito-
chondrial Myopathy, Encephalopathy, Lactic Acidosis and 
Stroke-like Episodes) is caused in 80% of the cases by the 
m.3243A>G mutation in the tRNALEU(UUR) gene, although 
there have been other mutations described in protein cod-
ing genes [35, 36, 40, 80, 136, 141]. MERRF (Myoclonic 
Epilepsy and Ragged-Red Fiber), which usually also pre-
sents with cerebellar ataxia is mainly caused by mutations 
in the tRNAlys gene (m8344A>G, m8356T>C, m.8363G>A), 
being the m.8344A>G the most frequent of them [49, 51, 
53, 142]. The previously described defects affect the gene 
expression machinery of the mitochondrial genome and 
will generally affect mitochondrial protein synthesis, mo-
reover an increased ROS production has been described in 
cybrids carrying the MELAS m.3243A>G mutation or the 
KSS associated common deletion Δ4977 [89, 143]. In addi-
tion, there are mutations described in protein coding genes 
or in mitochondrial nuclear genes that would only affect 
individual complexes of the respiratory chain: NARP (Neu-
ropathy, Ataxia and Retinitis Pigmentosa) has been mainly 
associated to the m.8933T>G/C mutation in the complex V 
subunit mt-ATP6 [33]. NARP patient derived cells were also 
found to have increased ROS production and decreased 
levels of ATP production [143]. Leigh syndrome is a pro-
gressive neurometabolic disorder that usually presents 
with seizures, hypotonia, fatigue, nystagmus, poor reflexes, 
eating and swallowing difficulties, breathing problems, 
poor motor function, and ataxia. This unique mitochondrial 
disorder is found to be caused by both mutations in the 
mtDNA and the nDNA. Mutations in many different genes 
have been identified to be the origin of Leigh syndrome, 
including mtDNA subunits of the complex I, IV and V, mt-
tRNAs, nuclear encoded subunits of complex I, IV and II, 
the pyruvate dehydrogenase complex, or some assembly 
factors of the cytochrome c oxidase (SURF1, SCO1, SCO2, 
COX10, COX15) or complex III (BSC1L) [144]. Cells derived 
from patients with 3 different complex I mutations and 
Leigh syndrome exhibited increased ROS production [143, 
145] (see Table 1 and Table 2, Figure 1). 

As already mentioned, many more genes are being 
identified as the reason behind mitochondrial dysfunction. 
Defects in mtDNA maintenance may result into defective 
mtDNA replication and lead to quantitative loss of mtDNA 
(mtDNA depletion) or qualitative one (mtDNA deletion). 
Downstream perturbation of mitochondrial protein syn-
thesis will final lead to a bioenergetics defect. MPV17 is a 
mitochondrial inner membrane protein involved in 
maintenance of mtDNA. It is believed to be involved in the 
import of deoxynucleotides into mitochondria. Pathogenic 
variants in MPV17 have been reported to cause hepato-
cerebral mtDNA depletion syndrome with liver failure, de 
velopment  delay  and  other  neurological  manisfestations 
[146, 147]. In addition, infantile Navajo neuropathy (NNH), 
a neurohepatological disorder  prevalently  present  among   
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Navajo children in the southwestern  of  USA  has  been 
found to be caused by mutations in MPV17 [148]. A recent 
report analysing new pathological variants in MPV17 

showed that most patients exhibited a single or combined 
respiratory chain complex activity decrease [149] (see Ta-
ble 2). 

TABLE 2. Mitochondrial defects caused by nuclear encoded genes. 

 

Mitochondrial defects - nuclear encoded (nDNA) [60] 

OXPHOS (structural proteins and assembly factors) 

Complex I Complex II Complex III Complex IV Complex V 
NDUFS1 
NDUFS3 
NDUFS6 
NDUFS8 
NDUFB9 

NDUFB11 
NDUFA2 

NDUFA10 
NDUFA12 
NDUFAF1 
NDUFAF3 
NDUFAF5 

NUBPL 
ACAD9 

NDUFS2 
NDUFS4 
NDUFS7 
NDUFB3 

NDUFB10 
NDUFV1 
NDUFA9 

NDUFA11 
NDUFA13 
NDUFAF2 
NDUFAF4 
NDUFAF6 
FOXRED 

SDH-A 
SDH-B 
SDH-C 
SDH-D 

SDHAF1 
SDHF2 

CYC1 
UQCRC2 
UQCRB 
UQCRQ 
BCS1L 
LYRM7 
UQCC2 
UQCC3 

COX4I1 
COX5A 

COX6A1 
COX7B 
SURF1 
SCO1 
SCO2 

COX10 
COX14 
PET100 
APOPT1 

COX4I2 
COX6B1 
COX8A 
COX15 
COX20 
COA3 
COA5 
COA6 
COA7 

LRPPRC 
FASTKD2 
TACO1 

ATP5E 
ATP5A1 
ATP8A2 
ATPAF2 

TMEM70 

mtDNA maintenance 

POLG  
FBXL4 

MGME1 

POLG2 
DGUOK 

ANT1 
RRM2B 

MPV17 
SUCLA2 

OPA1 
SUCLG1 

MFN2 
TK2 

C10ORF2 
TFAM 

Mitochondrial Import 

DDP DNAJC19      

Mitochondrial Protein Synthesis 

AARS2 
IARS2 
SARS2 

GTPBP3 
GFM2 

MRPS22 

CARS2 
KARS 

TARS2 
MTFMT 

C12orf65 
MRPL44 

DARS2 
LARS 

VARS2 
MTO1 

RMND1 
PUS1 

EARS2 
LARS2 
YARS2 
TRMT5 
MRPL3 

FARS2 
NARS2 
EFG1 

TRMT10C 
MRPS7 

GARS2 
PARS2 
TSFM 
TRMU 

MRPL12 

HARS2 
RARS2 
TUFM 
GFM1 

MRPS16 

Iron Homeostasis 

FRDA 
IBA57 

ABCB7 
LYRM4 

GLRX5 
LYRM7 

ISCU 
FDXL1 

BOLA3 NFU1 ISCA2 

Coenzyme Q10 biogenesis 

COQ2 
PDSS1 

COQ4 
PDSS2 

COQ5 
CABC1 

COQ6 COQ7 COQ9 APTX 

Mitochondrial quality control 

SPG7 AFG3L2      

Mitochondrial Integrity 

DLP1 TAZ1 RMRP     

Mitochondrial Metabolism 

PDHA1 ETHE1 ATAD3     
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Aminoacyl-tRNA synthetases (ARS), are a family of pro-
teins encoded in the nucleus and present in either the cy-
tosol or mitochondria that ensure the proper conjugation 
of an amino acid with its cognate tRNA molecules. All mt-
ARS are synthesized in the cytosol, imported to mitochon-
dria due to an N-terminal targeting sequence (prese-
quence) which is cleaved upon translocation to the matrix.  
Pathogenic variants of mt-ARS will affect mitochondrial 
translation and have been implicated in human neurologi-
cal disorders of the brain, spinal cord and motor neurons in 
addition to other symptoms. Some of the most typical 
presentations are leukoencephalopathy with involvement 
of the brainstem and spinal cord and high lactate due to 
mt-aspartyl-tRNA synthetase (DARS2) mutations [150], 
leukoencephalopathy with thalamus and brainstem in-
volvement and high lactate, caused by mt-glutamyl- tRNA 
synthetase (EARS2 [151]). However, there are other mt-
ARS mutations which may also produce white matter le-
sions. The similar symptoms shown by ARS mutations may 
imply a shared mechanism of disease, however such a 
mechanism has not been yet demonstrated. Among the 
possible molecular reasons are: a reduced aminoacylation 
activity, altered dimerization, mislocalization, gain of func-
tion though pathogenic interactions and loss of noncanoni-
cal function [152] (see Table 2). 
 

NEW STRATEGIES TO FIGHT MITOCHONDRIAL DERIVED 
STRESS 
Nowadays there is no actual treatment for mitochondrial 
diseases. Nevertheless, in the last years a number of ther-
apeutic strategies have been proposed, mainly in animal 
models. They can be classified into those acting on com-
mon pathways, and therefore applicable to different dis-
eases, and those which aim to ameliorate a particular dis-
order (Figure 1) [153]. 

Those tissues or organs affected by decreased ATP pro-
duction, and therefore impaired bioenergetics, can benefit 
from increased mitochondrial mass and activity. The tran-
scriptional co-activator peroxisome proliferator activated 
receptor-1alpha (PGC1alpha) is the master regulator of 
mitochondrial biogenesis. It increases the activity of sever-
al transcription factors, like the nuclear respiratory factors 
(NR1 and NR2), thereby controlling the expression of 
OXPHOS related genes. In addition, PGC1alpha interacts 
with the peroxisomal proliferator activator receptors 
(PPARs), which regulate the expression of fatty acid oxida-
tion genes [154]. PGC1alpha is activated either by deacety-
lation by Sirt1, or phosphorylation by AMPK, both of which 
can be modulated pharmacologically [155].Under physio-
logical conditions, PCG1alpha shows its highest expression 
levels in the heart, and mouse models lacking this protein 
have shown a normal cardiac function in unstimulated 
conditions. However, an impaired cardiac function was 
observed during certain stress conditions, like intense ex-
ercise or aortic constriction. Thus, the physiological role of 
PCG1alpha seems to be in fighting cellular stress [156]. 

Another possible strategy is to bypass the block in the 
respiratory chain from specific complex defects. In such a 

way, electrons would flow again and reduce ROS produc-
tion. Concomitantly, unaffected complexes would pump 
protons across the inner membrane and increase ATP pro-
duction. The yeast Saccharomyces cerevisiae NADH reduc-
tase (Ndi1), which transfers electrons from NADH to coen-
zyme Q (CoQ), has been used to bypass CI defects [157]. In 
a similar approach, the alternative oxidase (AOX), which 
transfers electrons from CoQ to molecular oxygen in dif-
ferent organisms, has been used to bypass CIII and IV de-
fects in cell culture [158] and to ameliorate to different 
extent respiratory defects in fly models [159, 160]. The 
enzyme has been successfully expressed in murine models 
[161], however correction of respiratory chain defects has 
not been shown yet in vivo in mammals. 

As previously described (see above), the dynamin-like 
GTPAse OPA1 is required for proper mitochondrial shaping. 
Regulating fission and fusion helps fight mitochondrial mal-
function. Increasing the expression of long isoforms of 
OPA1 improves respiration efficiency by enhancing super-
complex assembly and protects in vivo from many insults, 
such as ischemia/reperfusion, denervation/induced muscle 
atrophy, and OXPHOS deficiency [89, 162, 163].  

In order to cope with increased oxidative damage gen-
erated in damaged mitochondria, different small molecules 
with antioxidant properties have been tested. Some exam-
ples, like Idebenone, lipoic acid, or Coenzyme Q10 , directly 
transfer electrons to the respiratory chain and bypass de-
fective complexes. Others, like EPI-743 and RP103, en-
hance the biogenesis of glutathione, an important cellular 
antioxidant. KH176, can reduce altered cellular ROS levels 
and protect OXPHOS deficient cells against redox stress by 
targeting the Thioredoxin/Peroxiredoxin system [164]. 
MTP-131 is a member of the Szeto‐Schiller (SS) peptide 
family and binds to CL. It increases OXPHOS capacity and 
improves the way mitochondria respond to metabolic 
changes. L-Arginine, a donor of nitric oxide, which thus 
regulates vascular tone, was shown to induce an improve-
ment in aerobic capacity and muscle metabolism in models 
for mitochondrial disease [165]. 

Finally, genetic approaches can be used to correct 
mutations at a genomic level. Mitochondrially targeted 
restriction endonucleases have been used to shift 
heteroplasmy levels in cell lines with mutations in mtDNA 
and in heteroplasmic mice. Introduction of TALE and zinc 
finger nucleases (TALEN and ZFN) enabled the addition of 
specificity to the nucleases so that mutant DNA molecules 
could be selected for by directing unspecific restriction 
enzyme (FokI) to appropriate specific sequence assembling 
ZFN or TALE modules [166, 167]. However, this approach 
requires very large constructs that do not so easily fit into 
adeno-associated viruses (AVV) vectors. The Clustered 
Regularly Interspaced Short Palindromic Repeats (CRISPR) 
system is a bacterial immune system that has been 
modified for genome engineering. Due to the simplicity 
and adaptability of this technique, CRISPR has quickly 
displaced the previously established TALENs or ZFNs for 
genome engineering. CRISPR consists of two elements: a 
guide RNA (gRNA) and a non-specific CRISPR-associated 
endonuclease (Cas9). The gRNA is a short synthetic RNA 
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composed of a "scaffold", necessary for Cas9 binding, and 
a 20 nt targeting sequence that is specific to the gene of 
interest [168]. CRISPR was originally employed to knock-
out target genes, but it has also been used to 
chromosomally modify or tag proteins, and to activate or 
repress target genes. However, the viability of this 
approach to target mitochondrial genes, mainly because of 
the requirement of a reliable nucleotide import system 
into mitochondria is not yet clear [169]. 

 

CONCLUDING REMARKS 
Mitochondrial diseases show very complex and various 
clinical presentations. Because of the dual genetic origin of 
mitochondrial proteins, the number of genes susceptible of 
causing a mitochondrial pathology is large. Thus, the diag-
nostic process of mitochondrial diseases is usually compli-
cated and very long, and in many cases although there is a 
clear suspicion of a mitochondrial defect, the final defect 
behind the phenotype remains undercover [170].  

Despite the heterogeneity of the diseases and the ge-
netic defects the final kind of cellular stresses are similar. 
In the most cases, there is a bioenergetic defect or an in-
creased production of ROS. It remains unclear why alt-
hough many genetic defects are present in the whole body, 
only certain tissues are affected. There may be different 
mechanisms to cope with mitochondrial stress, which may 
be tissue specific [73]. Indeed, disease models of mtDNA 
replication machinery failure have been linked to imbal-
ance of the cellular dNTPs pool and consequently to in-
creased glutathione biogenesis through de novo serine 
biogenesis. This metabolic switch was proposed to be a 
specific and rapid response to cellular stress/mtDNA dam-
age in skeletal muscle and heart [171]. Together with this 
pathway, transcriptional response and mitochondrial un-
folded protein response constitute the integrated mito-
chondrial stress response (ISRmt), which is controlled by 
the metabolic signalling regulator mTORC1 in muscle. 
However, long-term activation of cellular stress responses 
may be detrimental since chronic upregulation of anabo-

lism contributes to mitochondrial myopathy pathogenesis 
[172]. In addition, there is a certain multifactorial compo-
nent in mitochondrial diseases. In some cases, ancient mt-
rRNAs mutations rendered no adverse phenotype unless 
some environmental factors were used [72]. Therefore, the 
different incorporation and tolerance of tissues and organs 
for different xenobiotics may be different. Population vari-
ation plays also an important role in enhancing/ diminish-
ing mitochondrial-related phenotypes, like population pol-
ymorphisms in mt-rRNAs and side effects derived from 
antibiotic treatment [173]. Nevertheless, a deeper investi-
gation will be required to understand tissue specificity of 
mitochondrial diseases. 

There have been several approaches proposed to treat 
mitochondrial diseases, however their application to the 
clinics is still a challenge [153]. Nevertheless, the discovery 
of new genome editing tools and the development of stem 
cell technologies will provide open new avenues of possi-
bilities for the treatment of mitochondrial diseases. 
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