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ABSTRACT  Astrocytes have historically been considered structural supporting 
cells for neurons. Thanks to new molecular tools, allowing specific cell abla-
tion or over-expression of genes, new unexpected astrocytic functions have 
recently been unveiled. This review focus on emerging groundbreaking find-
ings showing that hypothalamic astrocytes are pivotal for the regulation of 
whole body energy homeostasis. Hypothalamic astrocytes sense glucose and 
fatty acids, and express receptors for several peripheral hormones such as 
leptin and insulin. Furthermore, they display striking sexual dimorphism 
which may account, at least partially, for gender specific differences in energy 
homeostasis. Metabolic alterations have been shown to influence the initia-
tion and progression of many neurodegenerative disorders. A better under-
standing of the roles and interplay between the different brain cells in regu-
lating energy homeostasis could help develop new therapeutic strategies to 
prevent or cure neurodegenerative disorders. 
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INTRODUCTION 
The brain is the organ responsible for the centralized con-
trol of the other organs’ functions and, in higher verte-
brates, of reasoning. Such tasks are achieved thanks to the 
interconnections of billions of neurons and glia cells. Due 
to their role in receiving, processing, and transmitting in-
formation neurons are considered to be the primary cell 
types of the central nervous system, and the only reposito-
ry of reasoning and awareness. Astrocytes are the most 
abundant type of glial cells [1]. Given their ‘not electrically 
excitable’ nature, it has long been assumed that astrocytes 
merely act as structural supporting cells for neurons. How-
ever, phylogenetic and recent experimental evidence cor-
roborate the idea that glia in general, and astrocytes in 
particular, may have played a direct role in the establish-
ment of higher cognitive function. While the rat cerebral 
cortex contains roughly 0.4 glia to neuron cells [2], the 
human highly evolved neocortex has a ratio of 1.4 [3, 4]. 
The same overall increase is also observed within a species 
based on the evolutionary stage [2, 5], and the neuronal 
density of the brain area considered [6]. Rather than to 
brain size the change seems to correlate to the average 
neuronal size and is independent from neuronal metabolic 
requirements [6]. While the number of neurons is not pro-
portional to the size of the brain, there is an almost linear 

correlation amongst non-neuronal cell density and brain 
mass in species spanning 90 million of years of evolution 
[7]. This suggests the existence of an evolutionary con-
served mechanism to add glial cells to the brain as its size 
and/or complexity increased [8]. It also infers that the 
functions of glial cells are so fundamental for brain physi-
ology to have been maintained for millions of years of evo-
lution [6]. It was recently shown that the engraftment of 
mice with human derived astrocytes increases activity de-
pendent plasticity and learning compared to the rodent 
engrafted counterparts [9]. Alterations in astrocyte func-
tion result in impairment of slow wave synchronicity and 
sleep [10], memory consolidation [11], and associative 
memory [12], strongly substantiating their involvement in 
rhythm generation and neural network patterning. At a 
cellular level, it has been established that astrocytes are 
instrumental for modulating synaptic plasticity by regulat-
ing the formation, maintenance and removal of synapses 
[13], the rate of local cerebral blood flow and the volume 
of the extracellular space [14], the secretion or removal of 
neurotransmitters from the synaptic cleft [15, 16]. Fur-
thermore, brain energy production, delivery and storage 
heavily rely on the astrocytic repertoire of receptors, chan-
nels, transporters, and enzymes. The wealth of progress in 
the understanding of the bidirectional metabolic coupling 
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between neurons and astrocytes, and its impact on brain 
metabolism and cognition has been extensively reviewed 
over the past years [17-21]. This short review will focus on 
emerging evidence showing that astrocytes are not only 
essential for brain function and metabolism, but also con-
tribute to whole body energy homeostasis. 

 

HYPOTHALAMIC ASTROCYTES AS NUTRIENT SENSORS 
The hypothalamus is the portion of the brain that inte-
grates sensory inputs from the external environment with 
hormonal and neural signals from the body, allowing ad 
hoc short- and long-term homeostatic adjustments [22]. As 
a result of the coordinated output of several neuronal 
networks, the hypothalamus is involved in the control of 
satiety and hunger, body temperature, sleep, circadian 
rhythms, thirst [23-25]. From an anatomical point of view, 
the hypothalamus shows unique features compared to the 
rest of the brain. The medial-ventral portion of the hypo-
thalamus (i.e. median eminence, vascular organ of the lam-
ina terminals, subfornical organ) is characterized by the 
absence of blood-brain barrier and extensive vasculariza-
tion with highly fenestrate capillaries [26, 27]. Similar, fe-
nestrated capillarization is also observed in the ventrome-
dial area and the nucleus arcuate [28, 29]. This peculiar 
vascularization bestows these areas the ability to release 
hypothalamic hormones in the general blood stream, as 
well as the chance to act as sensory hubs. An intricate net-
work of specialized glial cells, tanycytes and astrocytes, 
regulates the diffusion and response to circulating factors 
such as peripheral hormones, nutrients and peptides. Glu-
cose is the main energy source of the mammalian brain 
and astrocytes actively coordinate its uptake, metaboliza-
tion and storage [19-21]. In the hypothalamus the role of 
the neuron-astrocyte functional glucose coupling expands 
beyond the fulfillment of energy requirements. Hypotha-
lamic astrocytes actively cooperate with specialized ‘glu-
cose sensitive' neurons [30] in detecting circulating glucose 
levels, and generating the proper systemic metabolic re-
sponse. This is suggested by experimental evidence show-
ing that the expression of glucose transporters GLUT1 and 
GLUT2 in astrocytes is critical for glucose sensing. In ro-
dents, whole body as well as hypothalamic hyperglycemia 
impairs glucose sensing by lowering the expression of 
GLUT1 in astrocytes [31]. However, the systemic glucose 
lowering response induced by hyperglycemia is restored by 
specific adenovirus-mediated re-expression of GLUT1 in 
hypothalamic astrocytes [31]. Animals expressing a GLUT2 
dominant negative construct that prevents glucose sensing 
but retains intact transport capacities, are hyperphagic 
with altered hypothalamic orexin, thyrotropin-releasing 
hormone and corticotropin-releasing hormone expression 
[32]. Similarly, GLUT2 knock out mice rescued by pancreat-
ic expression of GLUT1 display temporal anomalies in fast-
ing-refeeding behaviors, impaired hypothalamic orexigenic 
and anorexigenic neuropeptide expression, and impaired 
systemic response to a glucose challenge [33]. In genetic 
complementation experiments, the specific re-expression 
of GLUT2 in astrocytes, but not in neurons, was able to 

restore the normal glucagon secretion response to physio-
logical hypoglycemia [34]. Further evidence of the re-
quirement of astrocytes in proper glucose sensing comes 
from studies using knock out models for connexins. Astro-
cytes are tightly connected by gap junctions to form a large 
functional syncytium that allows the selective transmission 
of nutrients and signaling molecules over long distances 
[35]. Connexins form hemi-channels that are instrumental 
for astrocytic network transmission. The siRNA-mediated 
ablation of connexin 43 in the arcuate nucleus diminishes 
the release of insulin from the pancreas in response to 
central glucose upregulation [36]. This finding supports the 
notion that astrocytic intercommunication is essential to 
proper central glucose sensing and peripheral response 
[36]. Under conditions of reduced glucose availability, the 
body can fulfill its energy requirements by switching from 
glucose to fatty acids utilization. In the brain, astrocytes 
are the only cell type able to utilize fatty acids for the syn-
thesis of ketones bodies [37]. Contrary to most brain re-
gions the production of ketones in the hypothalamus is 
relatively high and, at least for certain fatty acids, glucose 
dependent [38, 39]. The oxidation of palmitate, but not 
oleate, is indeed decreased by glucose via 5’-adenosine 
monophosphate-activated protein kinase (AMPK)-
dependent mechanism in hypothalamic but not cortical 
brain slices [39]. Hypothalamic ketones levels are im-
portant to mediate food behavior. Specifically, high ke-
tones production in the arcuate nucleus and ventromedial 
hypothalamus, signals high fat intake and elicits a reduc-
tion in caloric intake [40]. Furthermore, the direct actions 
of glucose and free fatty acids on sensing neurons in the 
ventromedial hypothalamus can be overrode by ketones 
released from astrocytes [40]. Another example of in-
volvement of astrocytes in lipid sensing is given by the ob-
servation that intraventricular infusion of apolipoprotein E 
(ApoE) decreases food intake, while its neutralization with 
anti-ApoE antibodies stimulates it [41]. Astrocytes are the 
brain predominant site of cholesterol synthesis [42] and 
the principal cell type expressing ApoE, thus the most likely 
effectors of ApoE-mediated food behaviors [41, 43]. Inter-
estingly, both ketones and ApoE have been linked to cen-
tral leptin signaling. Acetoacetyl-CoA synthase, a neuronal 
ketone body utilizing enzyme, is selectively induced by 
leptin in the ventromedial hypothalamus and arcuate nu-
cleus via AMPK inhibition [44]. Leptin can also upregulate 
ApoE levels [43]. 

 

ASTROCYTES AS MEDIATORS OF ENDOCRINE SIGNAL-
ING  
The possibility that astrocytes may participate in the regu-
lation of body homeostasis in other ways than direct nutri-
ent sensing is inferred by the fact that they express recep-
tors for hormones involved in energy homeostasis such as 
leptin [45, 46], ghrelin [47], insulin-like growth factor-1 [48], 
thyroid hormone [49], glucagon like peptide-1 GLP-1 [50], 
and insulin [51]. How the specific activation of these recep-
tors in hypothalamic astrocytes impacts metabolism has 
just began to be explored. Morphological and biochemical 
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changes have been shown in hypothalamic astrocytes fol-
lowing hormonal stimulation. For example, changes in cir-
culating levels of leptin modify the expression of astrocytic 
glucose and glutamate transporters [52, 53], as well as the 
extension of sheathing and synaptic contacts on adjacent 
neurons [52, 54, 55]. These structural changes result in 
altered neuronal electrophysiological responses. The astro-
cytic-specific ablation of the leptin receptor leads to de-
creased astrocytic projections and coverage of 
proopiomelanocortin neurons, modulation of the electrical 
activity of proopiomelanocortin and agouti-regulated pro-
tein neurons, and ultimately in the attenuation of the ano-
rexigenic response [55, 56]. While under normal feeding 
conditions astrocytic-deficient leptin receptor mice do not 
show a clear metabolic phenotype [55, 57] when chal-
lenged with a high fat diet they are partially protected 
from hyperleptinemia and leptin resistance thus obesity 
[57]. Consistently, diet-induced obese animals show an 
increase of hypothalamic astrocytic coverage, as well as 
specific increase of leptin receptor in glial fibrillary acid 
protein (GFAP)- positive cells [58]. It has also been sug-
gested that leptin-mediated satiety effects could be facili-
tated by astrocytes responses to ghrelin. Stimulation of 
astrocytes with ghrelin modify glutamate and glucose me-
tabolism as well as glycogen storage by decreasing GLUT2, 
glutamine synthetase and lactate dehydrogenase, and in-
creasing glutamate uptake, glycogen phosphorylase and 
lactate transporters [47]. Furthermore, ghrelin-mediated 
increase in food intake could be suppressed by the release 
of adenosine from activated astrocytes and consequent 
adenosine receptor A1-mediated inhibition of agouti-
related peptide producing neurons in the nucleus arcuate 
[59, 60]. Despite the presence of insulin sensitive glucose 
transporters GLUT4 and GLUT8 in various areas [21], con-
trary to peripheral organs, brain glucose fluxes are consid-
ered insulin-independent [61, 62]. However, there is evi-
dence that insulin signaling modulates central and systemic 
metabolic homeostasis [63, 64]. The mechanisms of central 
insulin actions are still poorly understood. It was recently 
shown that hypothalamic astrocytes insulin signaling is 
essential to integrate central glucose sensing and systemic 
glucose metabolism [50]. Utilizing several glial-specific loss 
of function models Garcia-Caceres and colleagues [50], 
elegantly demonstrated that the postnatal ablation of insu-
lin receptor in hypothalamic astrocytes modify their mor-
phology, mitochondrial function, and connectivity, result-
ing in reduced glucose dependent-activation of 
proopiomelanocortin neurons and impaired systemic re-
sponse to changes in glycemia.   

 

HYPOTHALAMIC ASTROCYTES SEXUAL DIMORPHISM 
Neurological and neurodegenerative disorders are often 
characterized by sexual dimorphism in terms of either inci-
dence or severity and progression of the pathology [65]. 
Sexual dimorphisms at both morphological and physiologi-
cal levels have been reported for several areas of the brain 
including cortex, hippocampus, amygdala and hypothala-
mus [66-68]. In the hypothalamus the morphological 

changes can be appreciated even in gross anatomy and are 
particularly striking in astrocytes. Female’s astrocytes have 
a simple bipolar structure rather than the complex stellate 
shape found in males [69]. Furthermore, the levels of GFAP 
immunostaining in the arcuate nucleus of males increases 
from birth throughout adulthood [70]. The presence of 
receptors for estrogen, androgen and progesterone [71-73] 
is believed to underlie the dynamic morphological changes 
and possible different functional responses of hypothalam-
ic astrocytes in males and females [72, 74]. In the preoptic 
area the levels of astrocytic connexin 43 are regulated by 
estrogen and progesterone in a sex specific manner [75]. 
Glial structural changes are seen in the hypothalamic areas 
both in rodents and humans during the estrous cycle [76, 
77]. In non-human primates the glial coverage on gonado-
tropin-releasing hormone (GnRH) secreting neurons in-
creases, while the number of synaptic contacts decreases 
following ovariectomy, a phenomenon that can be revert-
ed by estrogen replacement [78]. Mechanistically the ster-

oid-induced morphology changes are due to increased -
aminobutyric acid (GABA) signaling via GABAA receptors 
[79]. The impact of sex hormones on metabolism regula-
tion is well known. Estrogen receptor alpha (ERa) regulates 
food intake, glucose homeostasis and augments energy 
expenditure [80, 81]. Fluctuation in food intake is seen in 
females based on their menstrual cycle, with the lowest 
during the preovulatory phase when estrogen peaks [82, 
83]. Conversely, higher energy intake and increased fat 
consumption are seen during the progesterone-controlled 
luteal phase [82, 83]. The emerging roles of astrocytes in 
body energy homeostasis and their clear sexual dimor-
phism, suggest that they may be instrumental in regulating 
the different responses of females and males to dietary 
challenges [84, 85]. Supporting such hypothesis is the evi-
dence that hypothalamic astrogliosis and inflammation 
following high fat diet are higher in male rodents com-
pared to females [85, 86]. In vitro experiments show dif-
ferent responses to saturated fatty acids in astrocytes iso-
lated from males and females [86, 87]. In vivo, long term 
high fat diet increases the levels of estradiol in females, 
while in males its levels are unchanged and associated with 
a significant decrease of ERa in the hypothalamus [87]. As 
ERa activation by estrogen have been shown to protect 
females from diet induced-obesity [80, 88], it is possible 
that astrocytic hypothalamic ERa levels are pivotal in medi-
ating such differences [87]. Notably, the discrepant hypo-
thalamic inflammatory responses observed in wild type 
animals following an obesogenic diet [86] are lost in ERa 
knockout animals [86, 88]. Consistent with their ability to 
synthetize cholesterol [42], astrocytes are also the primary 
steroidogenic cells in the brain [89]. The most prevalent 
hypothalamic neurosteroids are progesterone and its de-
rivative allopregnanolone [89, 90]. Interestingly, the syn-
thesis of neuroprogesterone has been shown to be upregu-
lated by estradiol in hypothalamic astrocytic cultures from 
females but not male rats [91]. Experimental evidence sug-
gests that in addition to the better characterized roles in 
sexual behavior, anxiety, analgesia and sleep [92-96], neu-
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rosteroids may influence energy homeostasis. Levels of 
allopregnanolone have been associated with changes in 
food intake and eating disorders in humans [82, 96]. In rats, 
administration of allopregnanolone increased the feeding 
latency, as well as the meal duration and the preference 
for fat [97, 98]. Although the specific mechanisms underly-
ing the changes in feeding behavior have not been eluci-
dated, neurosteroid’s best characterized molecular func-
tion is the modulation of GABA signaling at GABAA recep-
tors [99]. Hypothalamic GABA transmission is instrumental 
for proper feeding behavior and energy homeostasis [100]. 
As per other aspects of energy metabolism, recent evi-
dence shows that astrocytes play a pivotal role in GABA-
mediated food related behavior. Hypothalamic astrocytes 
morphology drastically changes in response to nutritional 
status [101]. High-order astrocytic processes shorten dur-
ing fasting and elongate during fed status [101]. These dy-
namic changes are associated with modified GABA trans-
mission in adjacent neurons and metabolic dysregulation 
[101]. 

 

CONCLUSIONS 
Metabolic alterations influence the initiation and progres-
sion of many neurodegenerative disorders [21]. Clinical 
evidence shows pre- and early-symptomatic changes in the 
hypothalamus in patients with Alzheimer's disease, Parkin-
son's disease, Huntington's disease, and amyotrophic lat-
eral sclerosis [102]. Although the hypothalamus senses and 
regulates energy homeostasis, not many studies have ex-
plored the reciprocal influence of the different cell types in 

managing energy homeostasis, nor their involvement in 
the progression of neurodegenerative disorders. The neu-
ron-centric and “most impacted area of the brain” focus, 
together with the over reliance on male animals in preclini-
cal studies, have hindered the elucidation of the biological 
mechanisms that underly brain energy sensing and man-
agement in both genders. Understanding these underpin-
ning biological differences by expanding our scientific focus, 
could be key in developing strategies for diagnosis and 
interventions.   
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