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ABSTRACT The liver is an organ with many facets, including a role in energy

production and metabolic balance, detoxification and extraordinary capaci- y v

ty of regeneration. Hepatic glucose production plays a crucial role in the rczi\;iidlfé)rEZZG(.)lngOlS
maintenance of normal glucose levels in the organism i.e. between 0.7 to Published 28..01:2019’

1.1 g/I. The loss of this function leads to a rare genetic metabolic disease

named glycogen storage disease type | (GSDI), characterized by severe hy-

poglycemia during short fasts. On the contrary, type 2 diabetes is character- Keywords: glucose6 phosphate, diabetes,
ized by chronic hyperglycemia, partly due to an overproduction of glucose glycogen storage disease type |, ,
by the liver. Indeed, diabetes is characterized by increased up- glucotoxicity, lipotoxicity, NAFLD, hepati
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take/production of glucose by hepatocytes, leading to the activation of de tumors

novo lipogenesis and the development of a non-alcoholic fatty liver disease.

In GSDI, the accumulation of glucose-6 phosphate, which cannot be hydro- Abbreviations:

lyzed into glucose, leads to an increase of glycogen stores and the devel- AGEcadvanced glycation ergroduct,

ChRBP¢ carbohydrate response elemen
binding protein,
ECMc extracellular matrix,

opment of hepatic steatosis. Thus, in these pathologies, hepatocytes are
subjected to cellular stress mainly induced by glucotoxicity and lipotoxicity.

In this review, we have compared hepatic cellular stress induced in type 2 EGR; endogenous glucose production,
diabetes and GSDI, especially oxidative stress, autophagy deregulation, and G6R glucose6-phosphate,

ER-stress. In addition, both GSDI and diabetic patients are prone to the de- G6Pasg glucoses-phosphatase,
velopment of hepatocellular adenomas (HCA) that occur on a fatty liver in GNG gluconeogenesis,

GSD; glycogen storage disease type I,
HCAc hepatocellur adenoma,
HCGQ; hepatocellular carcinoma,

the absence of cirrhosis. These HCA can further acquire malignant traits and
transform into hepatocellular carcinoma. This process of tumorigenesis

highlights the importance of an optimal metabolic control in both GSDI and iINOS; inducible nitric oxide synthase,
diabetic patients in order to prevent, or at least to restrain, tumorigenic NAFLL; non-alcoholic fatty liver disease,
activity during disturbed glucose metabolism pathologies. NEFA non-esterified fatty acid,

PPR; pentose phosphate pathway,
ROS; reactive oxygen species,
SREBRCc( sterole regulatory ement
binding proteinlc,

TGq triglyceride,

¢ b @*umor necrosis factor alpha,
VLDIg very low density lipoprotein.

LIVER FUNCTION IN GLUCOSE PRODUCTION AND tioning of the body, given that glucose is considered one of
NORMOGLYCEMIA the main metabolites ensuring engy production in the
Maintaining normal glucose levels in the organismie-b cel l s. “Energy source” has alyv

tween 0.7 to 1.1 g/L, is a complex task, involving a multi ~ attributed to glucose. However, glucose plays other asse
organ crosstalk responsible for metabolic homeostasis. tial roles in the cell, such as providing carbon skeletons on
This molecular machinery is crucial for the normalcun which all other specialized biochemical pathways ultieaat
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ly depend[1]. Indeed, glucose can be a limiting factor
cell proliferation not only by its energetic role, but above
all by providing carbons for nucleotide synthesia the
pentose phosphate pathway (PPP), required for DNAi-repl
cation. Thus, the various roles of glucose impose a strict
regulation of the cacentration of this metabolite in the
organism, while aberrations in the maintenance of norm
glycemia can induce deleterious phenotypes and patholo
ical states.

Glucose production during fasting periods

During fasting periods, glucose is consumed byrgans,
resulting in a decrease in glucose levels. Normoglycemia is
maintained by endogenous glucose production (EGP), a
process occurring in the liver, as well as in the kidneys and
in the intestine[1]. EGPis activated by glucagon or cou
ter-regulatory hormones such as epinephrine or narep
nephrine. Hepatic B relies on two different pathways:
glycogenolysis and gluconeogenesis (GNG). Renalnand i
testinal EGPs rely only on GNG. Shenn fasts induce the
hepatic glycogenolysis pathway, entailing a degradation of
glycogen into glucosé phaosphate (G6P)which is further
hydrolyzed into glucose. Once hepatic glycogen stores are
depleted during prolonged fasts, hepatocytes activate GNG
and thus use amino acids, lactate, pyruvate and glycerol as
substrates in order to synthetize glucode novo Thee-
fore, glycogeolysis and GNG use different substrates for
glucose production, yet share the last reactierthe hy-
drolysis of G6P into free glucose and inorganic phosphate
by glucoses phosphatase (G6Pase). While hepatic glucose
production is a widely known processned and intestinal
GNG has been often neglected, even though they contri
ute immensely to gicaemia homeostasis during lomgrm
fasting. Indeed, during 24 — 48 h fasting, kidney anchi
testine can be responsible for up to 50% and 20% wf gl
cose productia, respetively, as shown in rodents, which
corroborates comparable results in humajis6]. In add-
tion, intestinal GNG plays a central regulatory role inrene
gy homeostasis in the posibsorptive state. By delivering
glucose directly in the portal vein, intestinal GNG induces a
gut-brain glucose signal that positively controls different
metabolic functiors, such as food intake and insulin sens
tivity [1]. Failue to activate these physiological pathways
due to metabolite imbalance or improper signalization
caused by genetic, nutritional or environmental reasons
can result in hypogtemia.

Glucose
periods
After the ingestion of a meal, different nutrients such as
sugars, lipids and proteins are digested and absorbed. The
absorption of glucose raises the circulating concentration
of this metabolite in the blood stream. While glucose is
essential for the normal functiongn of the organism, xe
cessive amounts can induce glucotoxigity8]. In order to
prevent glucotoxicity and to form glucose stores needed
during fasting, glucose is captured by the liver and the p
ripheral tisues and stored under the form of glycogen and
lipids. This process is orchestrated by insulin, which is

storage during postprandial/post-absorptive
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known to activate glycogen synthesis, lipogenesis, as well
as protein synthesis. Failure to restore normoglycemia
after meals entails hyperglycemia adihbetes.

In this review, we will focus on the cellular stress i
duced in the liver under two different pathophysiological
states linked to deregulation in EGP, inducing either chro
ic hyperglycemia (Type 2 diabetes) or hypoglycemig- (Gl
cogen Storage Dease type - GSDI). In both cases, this
deregulation leads to the development of fatty liversdi
ease and, in some patients, it can lead to hepatic tumor
development Figure 1).

DEREGULATION IN ENDOGENOUS GLUCOSE PRODUC-
TION AND FATTY LIVER

Type 2 diabets is the most common condition characte
ized by chronic hyperglycemia. With the expansion of the
western civilization lifestyle, the incidence of this disease,
along with obesity, has dramatically risen worldwif83.
Type 2 diabetes is characterized by insulin resistance of the
tissues apable of capturing glucose aral/the lack of m-
sul i n pr odu ecellfaunction deckne[10].0As B
mentioned, chronically elevated glucose levels in the
bloodstream can iduce glucotoxicity. Most studies inadi
betesassociated glucotoxicity address this phenomenon in
the b—cells, as a negative retroactive system amplifying
insulin secretion dysfunction. However, in the liver, diss
ciating the exact mechanisms behind cetest induced by
glucose toxicity or by lipid tdcity, such as in diabetic
and/or obese patients is very difficult. Glucose and lipid
metabolisms are tightly linked, due to the interchange of
common metabolites. Thus, diabetes, characterized by
glucose metbolism dysfunction, is linked to liver disease,
more precisely to nofalcoholic fatty liver disease (NAFLD)
[11, 12] Indeed, up to 70% of diabetic patients mayepr
sent NAFLIPL1, 12] Even if glucose uptake is impaired in
obese/diabetic micd13], elevated levels of blood glucose
induce an increased metabolic flux downstream of G6P and
a subsequent activation ade novolipogenesis Figure 2)
[14]. Insulin and glucose can both induce hepatic lip@gen
sis. Interestingly, isulinmediated lipogenesis is activated
via sterol regulatory elementinding proteinlc (SREBP
1c), while glucosenediated lipogenesis is activateda
carbohydrate response element binding protein (ChREBP)
[15, 16] More precisely, glucose metabolites buas G6P
or xylulose Ephosphate were suggested to directly act
vate ChREBRS5]. SREBRc and ChREBP are key trarnscri
tion factors in lipogends [17]. Paradoxically, even in s
lin-resistant states, this hormone still manages to activate
hepatic lipogensisvia SREBRc.De novdipogenesis is not
the only process contributing to fatty liver. Indeedh- i
crease in hepatic lipid storage also results from dieg- el
vated nonesterified fatty acids (NEFA) due to a decreased
inhibition of adipose tissue lipolysireduced hepatic lipid
oxidation, as well as reduced lipid export in the form of
very low density lipoprotein (VLDI)}8]. Finally, hepatic
lipids tend to further accentuate insulin resistance by inte
fering with insulin signaling, thus enclosing a vicious cycle.
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While hyperglycemia is widely spread and classified as
an epidemic, chronic hypoglycemia (plasma glucose level
lower than 0.55 g/L) is not sewy common condition, &l
hough acute hypoglycemic episodes are often experienced
in diabetic patients undergoing unstable therapy or reeei
ing excessive amounts of insulin. Interestingly, patients
with GSDI, a rare genetic disease (1/100,000 live births)
suffer from chronic hypoglycemia during short fasting iper
0ds [19]. Indeed, as opposed to type 2 diabetes, thés p
thology is characterized by an absence of EGP due to a
deficiency in G6Pas€igure 1 and2) [19-21]. This leads to
the accumulation of G6P in hepatocytes. As in diabetic
patients (see above), increased G6P activates glycogen
synthesis andle novolipogenesis, leading to hepatorge
aly and severe steatosis indutéy strong glycogen and
lipid accumulation, respectivelf¥igure 1 and 2), associg
ed with hypercholesterolemia and hypertriglyceriderf2z,

23]. In GSDI human liverde novolipogenesis and chode
terol synthesis were fountb be increased 4€old and 7
fold, respectively[24]. Futhermore, conversion of VLDL
into intermediate density lipoproteins is delayed. Lipid
vesicles are present in abdance in GSDI livers, mainly in
the periportal zone, which corresponds to the locatioh
the highest expression of G6Pase in the [{j2&]. In add-
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FIGURE 1: Deregulation of endoge-

nous glucose production leads to

hepatic complications. In normal
physiological conditions, the live
maintains glucose homeostasis in tt
blood by releasing free glucose durir
fasts and by uglaking and storing
excessive glucose during pgstndial

periods. In type 2 diabeteshepatic
production and uptake of glucose i
deregulated, resulting in hyperglge
mia. In Glycogen Storage Disease ty
| (GSDI), glucose production innzo
pletely abolished, resulting in hgp
glycemia. Strikingly, both of thes
pathologies are characterized/mon

alcoholic fatty liver disease (NAFL
development that can lead to hepat
cellular carcinoma in some cases.
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tion, high G6P levels induce glycolysis and PPP, leading to
lactic acidosis and hyparicemia, respectivelj26-28].

Before developing the molecular events in regards to
cell stress in diabetic and GSDI hepatocytes, nbtewor-
thy that both of these pathologies are characterized by an
increase of the metabolic flux downstream of GEP].
This elevation leads to a deep metabolic reprogramming,
which induces cell stress in the liver of both diabetic and
GSDpatients[26].

OXIDATIVE STRESS IN THE CONTEXT
HYPERGLYCEMIA AND HEPATIC STEATOSIS

The glucotoxic and lipotoxic effects in the liver of diabetic
subjects have many facets. Oxidative stress is one of the
mechanisms behind this toxicity in the liy@&0-33], but it
presents as a mulbrgan pathology that can also be-r
sponsible forb—cell lossof-function, vascular comple
tions and strokes, neuropathy, retinopathy and nephaiep
thy in diabeteq34].

The mechanisms of Gé&ferived cell stress includ@-i
creased polyol pathway flux, increased intracellular- fo
mation of advanced glycation efatoducts (AGESs), activ
tion of protein kinase C (PKC), increased hexosamine
pathway or overprodution of superoxides by the nut
chondrial electron transport chaij35-38]. The polyol

OF
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pathway leads to the conversion of glucose to sorbitol and quently UDPN-acetylglucosamine [@RGIcNAC), resulting

further to fructose, thus reducing the availability of cofa in profibrotic signalization, characterized by the induction

tors such as NADPH needed for the glutathione pgerox of transf or mi ng €rlg wtahn dé-apcltaosrm
daseglutathione reductase system, rendering the cell gen activator inhibitorl (PAI1) expressida4, 45]

more vulnerable to reactive oxygen species (ROS), and Oxidative stress is due to an increased amount of ROS
therefore reinforcing oxidative stre§89, 40] Furthernore, in the cell that can result fro decreased antioxidant agti

during chronic hyperglycemia, glucose can be auto ity and/or increased ROS production. ROS notably include
oxidized and form covalent adducts with the plasma-pr superoxide anion (§), hydrogen peroxide @@,) and ly-

teins through a norenzymatic process known as glycation,  droxyl radical (HQ» ROS production is mainly attributed to

leading to the formation of AGH41-43]. Glycation of po- the mitochondrial complexes in the electron transport

teins interferes with their normal functions by disrupting  chain, responsible for the oxidative phosphorylation, as
molecular conformation, altering enzymatic activity and well as NADPH oxidases, xanthine oxidase, nitric oxigle sy
interfering with recept or s’ thade.urheptoducion.ofthéseighly unstablemokaulesiswi t |
receptorsfor AGEs (RAGE) to alter intracellular signaling, a physiological process that is tightly regulated by aimiox

gene expression, release of pnoflammatory molecules dant activity, in orér to prevent the negative cellular 6u

and free radicalsFinally, the increase in the hexosamine come of ROS. However, in pathological conditions, antiox
pathway flux is a complex process involving the usage of dant activity can be exceeded or insufficient to restore the
glucose to produce glucosamiephosphate and sules physiological concentration of ROS and thus lead toaexid
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FIGURE 2: Dysfunction of hepatocyte metabolism in type 2 diabetes and GSDI leads to cell stress. Type 2 diabetes is associated wi
hyperglycemia partially due to an overproduction of glucose by the liver, since G6Pase activity is increased, whereassaSiatad
with hypoglycemia de to the absence of G6Pase activity. However, these two diseases share similar hepatic metabolism leadir
development of fatty liver. In type 2 diabetes, hyperglycemia leads to an increase of the metabolic flux downstream dieBé&®s in
GSDI, hie absence of G6Pase activity is responsible for G6P accumulation. In both diseases, this results in an actieatiovotybo-

genesis. In addition, GSDI is characterized by glycogen accumulation. These metabolic perturbations are rédspoedlidless such as
ER stress. Even though mitochondrial dysfunctions were shown in both diseases, increased ROS production and oxidatgeosie
been observed in diabetes, but not in GSDI. In GSDI, autophagy is also clearly decreased, but tustiosélsial in diabetes. In bott
diabetes and GSDI, cell stress could cause DNA and protein damages, lipid peroxidation and finally, the developmeict tohihagati
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tive stress. Indeed, during cell stremsd/or mitochondrial terol and fatty acids are attracting more and more atte
insult, mitochondrial complex | and Ill mainly contribute to  tion as the designatedell injury drirers in hepatic lipid
oxidative stress by producing,@46]. In addition, men- related pathologies, due to theimiportant reactivity with

branebound NADPH oxidases can be activated byrmfla other components of the cell. First, increased presence of
matory signals and can also lead to the production of O  fatty acids in the liver can induce the production of free
Diabetic animals present decreased hepatic activityref a  radicals. Indeed, the oxidation of fatgcids in the mib-
tioxidant enzymes such as catalase and esogide ds- chondria, peroxisomes and microsomes, mediated in part
mutase 1, leading to increased ROS and hydroperoxides by cytochrome P450 (CYP2E1l), CYP4A10, and CYP4Al4,
[47, 48] The increase in ROS levels can damage lipids, pr results inanincrease in ROR6, 61] Conversely, ROS are
teins, DNA, RNA and can affect the functioning of various responsible for increased lipid pelidation. Transi-
organelles in the cell, such as the mitochondria or the e hydroxy2-nonenal (HNE) and malondtizhyde (MDA) are
doplasmic reticulum (ER), thus leading to a pathological someof the most studied lipid peroxafion products that
state n the hepatocyte§32, 48] For example, lipid pero can be highly toxic in the cells. These molecules cam-inte
idation is a process where ROS can interacttwh t h e ladt githdDNA and form etherDNA adducts, leading to
electrons and thus alter its structure and characteristics, carcinogenesi$62]. Moreover, aberant lipid meabolism
leading to important disturbances in the -liyer lipid in diabeticbbese patients can lead to an induction of ER
membranes of the cell, which can have strong effects on stress[63]. Indeed, hepatic lipid Btabolism deregulation

cell homeostasis and signalization, as well as survivil. Ta was shown to alter the composition of the phospholipids
ing into consideration that type 2 diabetes is associated within the ER and thus perturb protein syntheg#].

with hepatic lipid accumulation, oxidative stress represents Moreover, proten aggregation in liptoxic conditions can

a major issue in liver function in these patients. Furthe also induce this process. While ER stress can be induced by

more, ROS can easily target the reduction statsutghur- lipid misbalance, this process has an important pivotal role
containing amino acidsgysteine (Cys) andmethionine on lipid metabolism as a whole. For example, forced e
(Met) with great impact on the proteinticture and/for pression of BiP, a key negative uégor of the ER stress

enzymatic activity. Hydroxylation and carboxylation ad-pr response was shown to protect against hepatic steatosis
teins mediated by ROS can also occur during oxidative by inhibiting SREBP1c mediated lipogengghé Indeed, all
stress. Moreover, the quantification of the latter is often  of the components of the ER stress response, which i
used to assess the extent of oxidative damage in the cells cludes the IRE1a/XBP1 axishe PERK/ATF4 axis and ATF6
[49]. Protein damage and aggregation can easilyact the have all been shown to promote lipogenesis when attiva
functioning of the ER and thus induce ER stress. In regards ed, mainly by promoting SREBP1c expression, but &so d
to DNA, ROS can induce structural modifications of the rectly increasing the expression of lipogenic genes such as
bases, inter and intrastrand crosslinks, inducetrand FAS, ACC and S(BA]. As epected, attenuating ER stress
breaks and promote DNprotein crosslinkg50]. Indeed, in obese rodents decreases steatosis and improves insulin
oxidative stressnduced DNA damage has been docutaen sensitivity[66].

ed in diabeted51]. Last, ROS overproduction leads & d

pletion in adenosine triphosphatéATP) and nicotinamide Oxidative stress and inflammation

dinucleotide (NAD), which directly affects energy home Oxidative stress results in an increase in apoptosis of

stasis in the ce[b2]. hepatocytes and a subsequent releasé inflammatory
cytokines, attracting infiltration of the liver by inflanan
ROS and lipids tion-mediated eukocytes[67]. Proeinflammatory meda-

While the lipid storage capacity of adipose tissues is much tors involved in hyperglycemic liver damage include rinte
higher than other tissues, the liver is able to store large leukins such as 4l and IE6, nuclear factor (NKB), mib-

amount of lipidsin form of triglyceride TG, diacylglycerol genactivated proteinkinase (MAPK), TGB1, poly ADP

and cholesterol ester$53]. Hepatic lipids ecumulate in ribose polymerase (PARPhdatumor necrosis facteo
cytoplasmic lipid droplets and form highly dynamic arg ( T N B, 68-70]. Indeed, diabetic rat models nfirmed

nelles also containing proteins, such as perilifsd, 55] thatint he | i ver , t h eesuitsnindicreased on o f
Many studies suggest that TG, even in high amounts in the levels of NF/kB and JNK signaling, characterized by further

liver, when sored in lipid vesicles, are agively inert, non induction of inducible nitric oxide synthase (iNOS) ana-co

reactive and thus rather inoffensive. While the storage of sequent increase in nitric oxide production, as wellras i

NEFAin form of TG represents a protective mechanism creased apoptosis ratef/1]. Specific inhibidt

[56], their excessive accumulation and lipid droplet-e resulted in a decrease in the befereentioned pathways,
largement may lead to cell damagfe7, 58] Indeed, NEFA as well as decreased apoptopfd]. Treatment with antia-

spillover or the inability to store further BFA in TG due to idants such as Tempol also prevented lipiergxidation
lack of capacity to further enlarge lipid droplets andthe and apopt osi s andniNOBaeddhe bups T NF a
accumulation of specific lipotoxic kgounds could lead to guent oxidative stres§72]. On the other hand, increased

increased oxidativestress. Thus, lipids like ceramides; d circulating levels of # were found to be respusible for
acylglycerol and phosphatidic acid were shown to cbrtri the activation of another inflammatory pathway (STAT3
ute strongly to insulin resistance and therefore, to amplify  dependent) in theliver [73, 74] While {6 is a nitogen
the diabetic phenotypd59, 60] Furthermore, free choke
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required for efficient regeneration of thevier, chronic H6
activation could have a strong impact on the hepatocytes
and can be involved in the development of a pathological
state. Strikingly, other studies have shown tha6 Itan
possibly have an antnflammatory role in diabetes, co
firming that the molecular signalization in diabetes is quite
complex[75].

The production of these inflammatory factors is due to
various cell types infiltrating the liver, such as neutrophils,
macrophages and-lymphocytes, depending on the stage
and condition of the hepatic patholody6]. Furthermore,
resident cells in the liver, such as Kupffer cells (macr
phages) and even hepatocytes can also play a major role in
inflammation mediation. Interestingly, inflammation seems
to play a key role in promoting the progression of NAFLD to
steatohepatitis and further to cirrhosis and cancer. For
example, significant infiltration of T cells is detected & p
tients with NAFLD and calates with the disease severity,
suggesting that T cells promote the progression of NAFLD
[77]. In addition, it was shown that metabolic changes
linked to NAFLD promote a selective inhibition of CD4
lymphocytes infiltration, while CD8lymphocytes were
unaffected, leading to an acceleration of hepatic cawein
genesis[78]. Thus, the activation of inflammatory cells in
the liver leads to hepatocyte injury and liver fibrosis by
producing ROS and inflammatory mediators (as described
above). However, inflammation can also have beneficial
effects by stimulatig removal of dead cells and lives-r
generation. Thus, inflammatory cells and mediators in the
liver could have multifaceted functions in the liver bypr
moting pathogenesis progression of NAFLD or protecting
hepatocytes against apoptosis, as describedGao and
Tsukamoto (2016)76]. Finally, inflammation can also have
a direct role on insulin sensitivity. Indeed, ROS can inhibit
insulin sgnaling by inducing Insulin Receptor Substrate
(IRS) degradation in peripheral tissues, thus leading to-ins
lin desensitizatior{79]. Similarly, TNdFwas also shown to
induce insulin resistance.

HEPATIC OXIDATIVE STRESS AND
STATUS IN GSDI

While deciphering the clinical aspects of GSDI is a highly
important task, this pathology has much to offer to basic
research as well. Indeed, GSDtlmracterized by chronic
hypoglycemia in the absence of treatment, yet in the
hepatocytes these patients present extreme metabolic
features comparable to those observed in diabetes.aPar
doxically, GSDI patients present increased risk of insulin
resistanceeven though they suffer from hypoglycemia,
when they are not under optimal nutritional caf80]. In
order to study GSDI, several mouse models have been d
veloped, including total deletion andsér-specific deletion

of the gene encoding the catalytic subunit of the G6Pase
(G6p9g [81, 82] Total deletion mouse models preserg-s
vere hypoglycemia especially in the absence of oraher i
jected glucose, leading to premature death lmese mice
after weaning. However, livespecific G6pedeficient
(L.G6péd -) mice are viable, rendering this model partiqula

INFLAMMATORY
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ly well suited for longerm studies. Indeed, L.G6pemice
can produce glucose from their kidneys and intestine-du
ing fasting[83]. Both of these models develop the hepatic
pathology observed in GSDI patients, including hepat
megaly and hepatic steatosis, associated with hyperchole
terolemia ard hypertriglyceridemig81, 82]

Mitochondrial dysfunction and ROS

Mouse models have generated interesting data in regards
to cell stress associated with GSDI. As previousip-me
tioned, G6Pase deficiency leads to hepatocyte metabolism
chamcterized by the activation of glycolysiég novolipo-
genesis, PPP and glycogen synthpgxs 23] Interestingly,
hepatic mitochondrial dysfunction was reported, along
with a striking decrease in basal respiration, ATP turnover,
maximal respiration, and spare mitochondrial capaf34].
The structure of mitochondria was abnormal and theaomit
chondrial content was also decreased, probably due to
decreased biogenesis. Another study confirmed this result
in L.G6pd- mice, showing that lipignediated Sirtuinl
(SirT1l) dowsregulation entails a decrease in peroxisome
proliferator-activated receptoty coact i v altaogr,
and thus alters mitochondrial integrity, biogenesis, and
function in GSDI hepatocyt§85]. The mitochondrial apgm
tosis pathwg is also activate@4]. Indeed, an increase in
cytochrome c release, as well as activation of caspases 9
and 3 were reported inG6peknock down cells. Finally,
mitochondrial dysfunction was linked to insulin resistance
[80]. Despite this pathological mitbondrial phenotype,
ROS levels were not increased in the cells, leaving room to
speculate that oxidative stress might not be present in the
case of GSDI. Furthermore, increased circulating levels of
antioxidants reported in GSDI patients could contribute t
the protection against oxidative stre§86]. Elevated cing-
lating antioxidants could also protect GSDI patients against
atherosclerosis, despite hyperlipiden &7, 88] It is noe-
worthy that hyperuricemia, albeit a pathological state, can
also provide antioxidant defense, since plasma ucid s
also a potent lowmolecularweight antioxidant. However,
within the cell, uric acid can have poxidative roles as
well, by forming radicals with other oxidants, rendering the
effect of this metabolite in GSDI compl@8].

Since in GSDOhe capacity of G6P storage under the
form of glycogen is chronically exceeded, G6P activdges
novo lipogenesis and leads to hepatic steatosis. Hepati
steatosis in GSDI is alsmhanced by a decrease in lipid
b—oxidation. This catabolic pathway was shown to be
down-regulated in the liver of L.G6ge mice [90], with a
concomitant downreguation of the main activator of
boxi dati on, PPARO. |t ha s
duction of malonyl CoA bgcetyl CoA carboxylase (ACC)
during lipogenesis could further contribute to the decrease
i n—oxftlation in GSDI livers. Interestingly, a reactivation of
PPARa in
fibrate, resulted in a normalization of theepatic TG co-
tent and thus a complete disappearance of hepatic steat
sis in these micd91]. Strikingly, fenofibrate treatment
resulted in a normalization of the glycogen content in
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L.G6pée - mice aswell. Finally, a decreased activity of AMP
activated protein kinase (AMPK) in GSDI hepatocytes might
also contribute to impaired fatty acid oxidation and- i
creased fatty acid and cholesterol synthef82]. AMPK
regulates these processes by decreasimgonyl CoA -
duction via ACC inhibition andia the control of SREBP1
and ChREBP activities. A decreaseb-+oxidation could
thus contribute to the absence of increased ROS in GSDI
livers.

Autophagy

Interestingly, altered lipid metabolism affects autagy in
GSDI hepatocytesFigure 2). Indeed, lipid accumulation
due to increased ChREBP and

Cell stress in diabetes and GSDI

[98]. Lipids, as in GSDI, can also contribute utophagy
inhibition. However, as lipids constitute a great family of
molecules with different attributes, their differentialfe
fects on autophagy can vary greatly. For example, oleic
acid was shown to induce autophagy, whereas palmitic
acid suppresses thigrocess[99]. Thus while in GSDLa
tophagy was proven to be systematically repressed, this is
not always true in diabetes and obesity,opably due to
the variability in the etiology, the staging of the pathology
and the varible environment in diabetic andf obese
patients.

Inflammatory status in GSDI livers
Debpite theciaportaot leweld of Rarumulatesl glycogsn andn

decreased SIRT1/FOXO signaling and thus in the absence oflipids in the liver, asvell as the important metabolic imiba

autophagy activatiorf93]. Since SIRT1 is dowegulated
during lipogenesis, it entails a vicious cycle between lipid

ance, GSDI patients present lgrade hepatic inflamma-
tion [19, 100] However, asignificant elevation bserum

accumulation and autophagy in GSDI. Indeed, SIRT1 is II-8 levels was reported in patients bearing tumors, ipos

blocked due to lipid synthesis, whicsubsequently blocks
autophagy and leads to further lipid accumulation. Besides
lipids, other metabolites, proteins and even dysfunctional
organelles remain nonecycled and lead to cell stress or
even contribute to malignancy. In accordance, the re
activation of autophagy pathway in GSDI resulted in an
increase in lipid degradation, associated with an improved
hepatic histology[92]. It is noteworthy that in L.G6gk
mice autophagy was found activatedthre hepatic tumors,
compared to the surrounding netumoral tissue[27]. As
observed in many cancer types, this activation of autsph
gy in GSDI tums could facilitate their progression by
providing malignant cells with substrates for rapid pralife
ation, as well as a protective role against cell necrosis and
inflammation[94].

Autophagy is a process that is considered as regulated
by mTOR, AMPK and SIR9%4]. In the case of GSDIly-a
tophagy was shown to be independent from mTOR digna
ing, since mTOR inhibition using Temsirolimus did not lead
to autophagy activation in L.G6gpe mice [27]. As ma-
tioned earlier, AMPK is strongly dowegulated in GSDI
livers due to their energetic state, leaving only SIRT1 as a
master regulator.

tively correlating with neutrophilia and hepatic neutrophil
infiltration [100]. Hepatic transaminase (ASVLT) levels
are also usually normal, especially in patients with optimal
metabolic control and patients not bearing hepatic tumors
[100].

The absence of oxidative stress and inflammatay r
sponses in the case of GSDI might be the reason as to why
hepatic fibrosis is not associated with G$18]. Indeed,
GSDI patients and related animal models do not present
fibrosis in the liver, contrarily to otr types of glycogen
storage diseases. Consequently, these patients do eet d
velop cirrhosis. However, they present a highly elevated
risk of hepatic malignancy, characterized by a spedific t
morigenic process described below.

HEPATIC CARCIOGENESIS IN DIABETES AND GSDI
Nowadays it is becoming more and more evident that- di
betes is associated with chronic liver disefBel], leading

to an important risk of hepatocellular carcinoma (HCC
development[78-80]. Interestingly, it was suggested that
similar pathways are activated in both diabetes and dep
tocellular cancer[102, 105] For example, the Iwos
lin/Insulin Growth factor 1 (IGF1) signalization pathway

As observed in GSDI, NAFLD and diabetes can also beand the subsequent astation of mMTOR are increased in

characterizel by a decrease in autophagy. Howevernco
tradictory results showing ER stresediated induction of
autophagy in obesity, rather than a decrease, have been
reported as well. This highlighted that the levels of insulin
resistance, steatosis and the overathte of the hepab-
cytes have a role to play in the outcome of this process
[96]. Interestingly, one of the metabolites by whictu-a
tophagy decrease in obesity can be mediated is nitric oxide.
Indeed, obesity promotes-fitrosylation of lysosomal pr
teins in the liver, thereby impairing lysosomal enzynee a
tivities, and further facilitatig hepatic steatosis and insulin
resistancg97]. The canonical pathways regulating autep
agy are involved in autophagy repsisn as well. Indeed,
over-nutrition provides increased availability of amino-a
ids and glucose in obesity, which can constitutively activate
mMTOR and inhibit AMPK, resulting in autophagy repression
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both cases. In hyperinsulinemic conditions, insulin exerts a
mitogenic role, rather than a metabolic role, which is highly
beneficial for HCC progressidi06]. Furthermore, the
aforementioned inf a mmat ory medi adandr s
II-6 can also contribute to hepatic cancer development.
Last, taking into account that cancer cells are often highly
dependent on free glucose fueling thé&/arburg effect,
chronic hyperglycemia is ideal for their rapid progression.
In addition, hyperglyamia was shown to induce nuclear
B—catenin accumulation in cancer cells, which could be yet
another trigger of tumorigenesis in diabetfD7].

Interestingly, ipid-mediated expression of THMF an d
oxidative stress are responsible not only for cell injury,
inflammation, necrosis, but also for activation of stellate
cells inducing fibrosi§l08, 109] Indeed, in the livers»>e
posed to chronic injury, stellate cells promote the deve
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opment of fibrosis through excessive extracellulaatrix
(ECM) production and reduced ECM degradatjatO].
Reduced adiponectin levels can also potentiate theofibr
genic procesq111]. Fibrosis is a&ommon end point to
chronic inflammation in insulinesistant livers and it can
be further stimulated by Kupffer cells, the resident hepatic
macrophages. The formation of MalleBenk bodies,
composed of misfolded intermediate filaments, ubiquitin,
heat $rock proteins, and p62, can be observed during f
brogenesis[112]. Hepatic fibrosis can further evolve to
cirrhosis and HCC developmehig@re 3). Linking cirrhosis
and diabetes is very complex since cirrhosis itself is linked
to inaulin resistancg113]. Indeed, around 30% of patients
with hepatic cirrhosis present diabetes, while cirrhosis is
not necessarily induced by obesity / diabef&$4].

A) Canonical model

Fibrosis,

Steatosis inflammation

P.,

B) Alternative models

) Fibrosis,
Steatosis

?.,

Steatosis

E 9

HCA

inflammation
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It is noteworthy that an important fraction of obesep
tients develop HCC in the absence of liver cirrhasisvell
[115, 116] Indeed, around 54% of NAFLD eats diay-
nosed with HCC were not classified as cirrhotic, as opposed
to only 22% of Hepatitis C virus (HCV) pati¢bis]. Thus
hyperglycemidiyperlipidemic conditions in obesity could
favor hepatic hyperplasia development that can acquire
malignant traits in the absence of cirrhosis and transform
into HCC Kigure 3B). HCC can also arisee novodue to
extensive DNA damage and mutations occurring as a result
of chronic oxidative stress. Therefore, clinical surveillance
of the liver in obese patients is recommendeden in the
absence of fibrosigfrrhoss, in order to successfully @r
vent hepatic malignancy.

Cirrhotic

liver HCC

HCC in non-cirrhotic liver

HCC in non fibrotic, non-cirrhotic liver

FIGURE 3: Different models of hepatocellular carcinoma development. The canonical model of patocellular carcinoma (HCC) déve
opment (A) stipulates that patients with hepatic steatosis further develop inflammation / immune cell infiltration anddildrater on,
excessive fibrosis and inflammation can lead to cirrhosis development and HCGeH@iternative models of hepatocarcinogenesis
have been observed in obese / GSDI patients. Indeed, steatotic patients, who do not present cirrhosis, can also dedsopokeL(
since fatty livers are favorable for carcinogenesis. Moreover, in @8iehts, HCC can develop in rfilorotic, non-cirrhotic liver. These
tumors arise from the transformation of hepatocellular adenoma (HCA) to HCC.
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GSDI patients also present an increased risk of hepatic
tumor development. Indeed, around 50% of young adult
patients present at least one hepatocellular adenoma
(HCA) [118]. There is a high risk (about 10%) of
transformation of HCA into HCC, and this rate is
significantly higher in GSDI patients compared to-@8DI
patients. As opposed to G patients in the genar
population, hepatic fibrosigfirrhosis is absent in GSDI, and
therefore de novo formation of HCC has never been
reported. Indeed all HCC probably arise from a malignant
transformation of HCA into HCCrigure 3B). Thus,
malignang development in GSDI is a very particular linear
process, characterized by hepatic steatosis installation,
followed by HCA formation, which can later transform into
HCC. The exact mechanisms behind this elevated tumor
incidence in GSDI are not fully undrod. However, the
metabolic context in the liver of GSDI patients and animal
models could provide a favorable environment for
tumorigenesis [26]. As mentioned before, increased
glycolysis and subsequent lactate production, elevated
lipogenesis and PPP are tusome of the metabolic
alterations observed in GSDI livers. These metabolic traits
are associated to the Warburg effect, a metabolic process
infamously affiliated with cancer. Thus in GSDI, the liver
itself is characterized by a candéde metabolism,
potentially facilitating tumor formation and progression.

FINAL REMARKS

Metabolism and regeneration

As discussed above, the effects of glycemic imbalance are
mostly studied in the central nervous system, the pancreas,
in retinopathies and nephropathies, yebepatic damage
assessment is often overlooked. This is in part due to the
exceptional plasticity of the liver and the extraordinary
detoxification and regeneration mechanisms that itspo
sesses. Indeed, this organ is capable of efficient regener
tion after resection. This process has fascinated mankind
since the beginning of medical research, and it has been
extensively studied. Some of the facets of liver reganer
tion remain unknown; however, it has been shown that
metabolic aspects are highly important.

Indeed, liver regeneration after partial resectiore-d
picts perfectly the plasticity of the metabolism of the liver
and how metabolic switches can be crucial in pathophys
ology. For example, transient hepatic steatosis appearing
right after resection has k@ reported and described as
indispensable for proper regeneration and proliferation of
the liver, in order for the hepatocytes to repopulate the
liver [119]. In contrast, under these conditions glucose
homeostasis is understandably disturbed, since the nege
erating liver cannot completely assure thale of the main
glucoseproducing organ. This depends on the extent to
which the organ is resected, the physiopathological ¢end
tion of the remaining liver, as well as the overall health
state of the patient. Thusregeneration of the liver can
lead to hymglycemia, as often confirmed in many rodent
models and patients with partial hepatectonid20]. Inter-
estingly, supplementing the liver with glucose during this
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phase can have a negative impact on regenerafit20,
121]. Given that hypoglycemia is thought to induce lipolysis
in peripheral organs, facilitating the induction of transient
hepatic steatosis needed for regeneration, this outcome is
expected, yet it renders posiperative patient care ao-
plex. Moreover, hepatic ischemic episodes have been
shown to alter glucose metabolism in the liver by switching
from oxidative phosphorylation to a more proliferative
compatible metabolism, characterized by activation of
glycolysis (the Warburg effect).

Antioxidants against hyperglycemic damages and hepatic
tumors

Since hyperglycemia is strongly associated with oxidative
stress, the use of antioxidants in diabetes or in prevention
or curative strategies for HCC constituted tempting- a
proaches of treatment. Interestinglyarious antioxidant
agents such as metformin, Nfr2 agonists, Vitamin C and E,
resveratrol, as well as different plant extracts have been
used in HCC patients and patients at risk of HCC. The ou
comes in these strategies varied greatly among the studies
and were described as both prand antioncogenic122,
123]. While increased ROS in the cell can be responsible for
serious alterations of the DNA and other cell components,
it is noteworthy that these molecules are impant signd-

ing agents, physiologically needed for the activation of
certain defenses in the cell under ppathological cond
tions. Thus it seems important to emphasize that preven
ing this signalization with antioxidants could be harmful,
rather than bendicial. As antioxidants are widely popular
in the general population and not only in scientific circles,
several misconceptions have been previously highlighted
[124]. Indeed, the quantity, the type of antioxidants and
the duration of the treatment may have an enormous-i
pact on the outcome for the patient.

While many studies depict the effects afitioxidants in
diabetic/obese patients, assessment of the effects of these
drugs in GSDI patients is nearly impossible to perform,
firstly because of the small number of patient cohorts, but
also due to the various treatments that these patiengs r
ceivein parallel, such as hypolipidemic and hypouricemic
agents. However, a study in L.G8penice using the ar
oxidant Tempol showed that while this treatment managed
to increase the hepatic expression of Catalase and GPx1, it
did not have an impact on cantgenesig27].

Last, studies have shown that under some aineu
stances cancer cells can also be more sensitive to oxidative
stress than the surroundg healthy cell§125]. Therefore,
inducing oxidative stress in tumor cells is also an attractive
strategy to combat tumor progressidi26]. To conclude,
the redox levels in cancer and the surrounding healthy
tissue can vary greatly and one unique approach is not
applicable in all patients.
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