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ABSTRACT  The liver is an organ with many facets, including a role in energy 
production and metabolic balance, detoxification and extraordinary capaci-
ty of regeneration. Hepatic glucose production plays a crucial role in the 
maintenance of normal glucose levels in the organism i.e. between 0.7 to 
1.1 g/l. The loss of this function leads to a rare genetic metabolic disease 
named glycogen storage disease type I (GSDI), characterized by severe hy-
poglycemia during short fasts. On the contrary, type 2 diabetes is character-
ized by chronic hyperglycemia, partly due to an overproduction of glucose 
by the liver. Indeed, diabetes is characterized by increased up-
take/production of glucose by hepatocytes, leading to the activation of de 
novo lipogenesis and the development of a non-alcoholic fatty liver disease. 
In GSDI, the accumulation of glucose-6 phosphate, which cannot be hydro-
lyzed into glucose, leads to an increase of glycogen stores and the devel-
opment of hepatic steatosis. Thus, in these pathologies, hepatocytes are 
subjected to cellular stress mainly induced by glucotoxicity and lipotoxicity. 
In this review, we have compared hepatic cellular stress induced in type 2 
diabetes and GSDI, especially oxidative stress, autophagy deregulation, and 
ER-stress. In addition, both GSDI and diabetic patients are prone to the de-
velopment of hepatocellular adenomas (HCA) that occur on a fatty liver in 
the absence of cirrhosis. These HCA can further acquire malignant traits and 
transform into hepatocellular carcinoma. This process of tumorigenesis 
highlights the importance of an optimal metabolic control in both GSDI and 
diabetic patients in order to prevent, or at least to restrain, tumorigenic 
activity during disturbed glucose metabolism pathologies. 
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LIVER FUNCTION IN GLUCOSE PRODUCTION AND 
NORMOGLYCEMIA 
Maintaining normal glucose levels in the organism i.e. be-
tween 0.7 to 1.1 g/L, is a complex task, involving a multi-
organ crosstalk responsible for metabolic homeostasis. 
This molecular machinery is crucial for the normal func-

tioning of the body, given that glucose is considered one of 
the main metabolites ensuring energy production in the 
cells. “Energy source” has always been the main function 
attributed to glucose. However, glucose plays other essen-
tial roles in the cell, such as providing carbon skeletons on 
which all other specialized biochemical pathways ultimate-
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AGE ςadvanced glycation end-product, 
ChREBP ς carbohydrate response element 
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G6Pase ς glucose-6-phosphatase, 
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HCA ς hepatocellular adenoma, 
HCC ς hepatocellular carcinoma, 
iNOS ς inducible nitric oxide synthase, 
NAFLD ς non-alcoholic fatty liver disease, 
NEFA ς non-esterified fatty acid, 
PPP ς pentose phosphate pathway, 
ROS ς reactive oxygen species, 
SREBP-1c ς sterole regulatory element 
binding protein-1c, 
TG ς triglyceride, 
¢bCʰ ς tumor necrosis factor alpha, 
VLDL ς very low density lipoprotein. 
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ly depend [1]. Indeed, glucose can be a limiting factor in 
cell proliferation not only by its energetic role, but above 
all by providing carbons for nucleotide synthesis via the 
pentose phosphate pathway (PPP), required for DNA repli-
cation. Thus, the various roles of glucose impose a strict 
regulation of the concentration of this metabolite in the 
organism, while aberrations in the maintenance of normo-
glycemia can induce deleterious phenotypes and patholog-
ical states. 
 
Glucose production during fasting periods  
During fasting periods, glucose is consumed by all organs, 
resulting in a decrease in glucose levels. Normoglycemia is 
maintained by endogenous glucose production (EGP), a 
process occurring in the liver, as well as in the kidneys and 
in the intestine [1]. EGP is activated by glucagon or coun-
ter-regulatory hormones such as epinephrine or norepi-
nephrine. Hepatic EGP relies on two different pathways: 
glycogenolysis and gluconeogenesis (GNG). Renal and in-
testinal EGPs rely only on GNG. Short-term fasts induce the 
hepatic glycogenolysis pathway, entailing a degradation of 
glycogen into glucose-6 phosphate (G6P), which is further 
hydrolyzed into glucose. Once hepatic glycogen stores are 
depleted during prolonged fasts, hepatocytes activate GNG 
and thus use amino acids, lactate, pyruvate and glycerol as 
substrates in order to synthetize glucose de novo. There-
fore, glycogenolysis and GNG use different substrates for 
glucose production, yet share the last reaction – the hy-
drolysis of G6P into free glucose and inorganic phosphate 
by glucose-6 phosphatase (G6Pase). While hepatic glucose 
production is a widely known process, renal and intestinal 
GNG has been often neglected, even though they contrib-
ute immensely to glycaemia homeostasis during long-term 
fasting. Indeed, during 24 h – 48 h fasting, kidney and in-
testine can be responsible for up to 50% and 20% of glu-
cose production, respectively, as shown in rodents, which 
corroborates comparable results in humans [1–6]. In addi-
tion, intestinal GNG plays a central regulatory role in ener-
gy homeostasis in the post-absorptive state. By delivering 
glucose directly in the portal vein, intestinal GNG induces a 
gut-brain glucose signal that positively controls different 
metabolic functions, such as food intake and insulin sensi-
tivity [1]. Failure to activate these physiological pathways 
due to metabolite imbalance or improper signalization 
caused by genetic, nutritional or environmental reasons 
can result in hypoglycemia.  
 
Glucose storage during postprandial/post-absorptive 
periods 
After the ingestion of a meal, different nutrients such as 
sugars, lipids and proteins are digested and absorbed. The 
absorption of glucose raises the circulating concentration 
of this metabolite in the blood stream. While glucose is 
essential for the normal functioning of the organism, ex-
cessive amounts can induce glucotoxicity [7, 8]. In order to 
prevent glucotoxicity and to form glucose stores needed 
during fasting, glucose is captured by the liver and the pe-
ripheral tissues and stored under the form of glycogen and 
lipids. This process is orchestrated by insulin, which is 

known to activate glycogen synthesis, lipogenesis, as well 
as protein synthesis. Failure to restore normoglycemia 
after meals entails hyperglycemia and diabetes.  

In this review, we will focus on the cellular stress in-
duced in the liver under two different pathophysiological 
states linked to deregulation in EGP, inducing either chron-
ic hyperglycemia (Type 2 diabetes) or hypoglycemia (Gly-
cogen Storage Disease type I – GSDI). In both cases, this 
deregulation leads to the development of fatty liver dis-
ease and, in some patients, it can lead to hepatic tumor 
development (Figure 1). 

 

DEREGULATION IN ENDOGENOUS GLUCOSE PRODUC-
TION AND FATTY LIVER  
Type 2 diabetes is the most common condition character-
ized by chronic hyperglycemia. With the expansion of the 
western civilization lifestyle, the incidence of this disease, 
along with obesity, has dramatically risen worldwide [9]. 
Type 2 diabetes is characterized by insulin resistance of the 
tissues capable of capturing glucose and/or the lack of in-
sulin production due to β–cell function decline [10]. As 
mentioned, chronically elevated glucose levels in the 
bloodstream can induce glucotoxicity. Most studies in dia-
betes-associated glucotoxicity address this phenomenon in 

the b–cells, as a negative retroactive system amplifying 
insulin secretion dysfunction. However, in the liver, disso-
ciating the exact mechanisms behind cell stress induced by 
glucose toxicity or by lipid toxicity, such as in diabetic 
and/or obese patients is very difficult. Glucose and lipid 
metabolisms are tightly linked, due to the interchange of 
common metabolites. Thus, diabetes, characterized by 
glucose metabolism dysfunction, is linked to liver disease, 
more precisely to non-alcoholic fatty liver disease (NAFLD) 
[11, 12]. Indeed, up to 70% of diabetic patients may pre-
sent NAFLD [11, 12]. Even if glucose uptake is impaired in 
obese/diabetic mice [13], elevated levels of blood glucose 
induce an increased metabolic flux downstream of G6P and 
a subsequent activation of de novo lipogenesis (Figure 2) 
[14]. Insulin and glucose can both induce hepatic lipogene-
sis. Interestingly, insulin-mediated lipogenesis is activated 
via sterol regulatory element–binding protein-1c (SREBP-
1c), while glucose-mediated lipogenesis is activated via 
carbohydrate response element binding protein (ChREBP) 
[15, 16]. More precisely, glucose metabolites such as G6P 
or xylulose 5-phosphate were suggested to directly acti-
vate ChREBP [15]. SREBP-1c and ChREBP are key transcrip-
tion factors in lipogenesis [17]. Paradoxically, even in insu-
lin-resistant states, this hormone still manages to activate 
hepatic lipogenesis via SREBP-1c. De novo lipogenesis is not 
the only process contributing to fatty liver. Indeed, in-
crease in hepatic lipid storage also results from diet, ele-
vated non-esterified fatty acids (NEFA) due to a decreased 
inhibition of adipose tissue lipolysis, reduced hepatic lipid 
oxidation, as well as reduced lipid export in the form of 
very low density lipoprotein (VLDL) [18]. Finally, hepatic 
lipids tend to further accentuate insulin resistance by inter-
fering with insulin signaling, thus enclosing a vicious cycle.  
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While hyperglycemia is widely spread and classified as 
an epidemic, chronic hypoglycemia (plasma glucose level 
lower than 0.55 g/L) is not a very common condition, alt-
hough acute hypoglycemic episodes are often experienced 
in diabetic patients undergoing unstable therapy or receiv-
ing excessive amounts of insulin. Interestingly, patients 
with GSDI, a rare genetic disease (1/100,000 live births) 
suffer from chronic hypoglycemia during short fasting peri-
ods [19]. Indeed, as opposed to type 2 diabetes, this pa-
thology is characterized by an absence of EGP due to a 
deficiency in G6Pase (Figure 1 and 2) [19–21]. This leads to 
the accumulation of G6P in hepatocytes. As in diabetic 
patients (see above), increased G6P activates glycogen 
synthesis and de novo lipogenesis, leading to hepatomeg-
aly and severe steatosis induced by strong glycogen and 
lipid accumulation, respectively (Figure 1 and 2), associat-
ed with hypercholesterolemia and hypertriglyceridemia [22, 
23]. In GSDI human livers, de novo lipogenesis and choles-
terol synthesis were found to be increased 40-fold and 7-
fold, respectively [24]. Furthermore, conversion of VLDL 
into intermediate density lipoproteins is delayed. Lipid 
vesicles are present in abundance in GSDI livers, mainly in 
the periportal zone, which corresponds to the location of 
the highest expression of G6Pase in the liver [25]. In addi-

tion, high G6P levels induce glycolysis and PPP, leading to 
lactic acidosis and hyperuricemia, respectively [26–28]. 

Before developing the molecular events in regards to 
cell stress in diabetic and GSDI hepatocytes, it is notewor-
thy that both of these pathologies are characterized by an 
increase of the metabolic flux downstream of G6P [29]. 
This elevation leads to a deep metabolic reprogramming, 
which induces cell stress in the liver of both diabetic and 
GSDI patients [26]. 

 

OXIDATIVE STRESS IN THE CONTEXT OF 
HYPERGLYCEMIA AND HEPATIC STEATOSIS 
The glucotoxic and lipotoxic effects in the liver of diabetic 
subjects have many facets. Oxidative stress is one of the 
mechanisms behind this toxicity in the liver [30–33], but it 
presents as a multi-organ pathology that can also be re-

sponsible for b–cell loss-of-function, vascular complica-
tions and strokes, neuropathy, retinopathy and nephropa-
thy in diabetes [34].  

The mechanisms of G6P-derived cell stress include in-
creased polyol pathway flux, increased intracellular for-
mation of advanced glycation end-products (AGEs), activa-
tion of protein kinase C (PKC), increased hexosamine 
pathway or overproduction of superoxides by the mito-
chondrial electron transport chain [35–38]. The polyol 

FIGURE 1: Deregulation of endoge-
nous glucose production leads to 
hepatic complications. In normal 
physiological conditions, the liver 
maintains glucose homeostasis in the 
blood by releasing free glucose during 
fasts and by up-taking and storing 
excessive glucose during post-prandial 
periods. In type 2 diabetes, hepatic 
production and uptake of glucose is 
deregulated, resulting in hyperglyce-
mia. In Glycogen Storage Disease type 
I (GSDI), glucose production in com-
pletely abolished, resulting in hypo-
glycemia. Strikingly, both of these 
pathologies are characterized by non-
alcoholic fatty liver disease (NAFLD) 
development that can lead to hepato-
cellular carcinoma in some cases. 
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pathway leads to the conversion of glucose to sorbitol and 
further to fructose, thus reducing the availability of cofac-
tors such as NADPH needed for the glutathione peroxi-
dase–glutathione reductase system, rendering the cell 
more vulnerable to reactive oxygen species (ROS), and 
therefore reinforcing oxidative stress [39, 40]. Furthermore, 
during chronic hyperglycemia, glucose can be auto-
oxidized and form covalent adducts with the plasma pro-
teins through a non-enzymatic process known as glycation, 
leading to the formation of AGEs [41–43]. Glycation of pro-
teins interferes with their normal functions by disrupting 
molecular conformation, altering enzymatic activity and 
interfering with receptors’ function. AGEs interact with 
receptors for AGEs (RAGE) to alter intracellular signaling, 
gene expression, release of pro-inflammatory molecules 
and free radicals. Finally, the increase in the hexosamine 
pathway flux is a complex process involving the usage of 
glucose to produce glucosamine-6-phosphate and subse-

quently UDP-N-acetylglucosamine (UDP-GlcNAc), resulting 
in pro-fibrotic signalization, characterized by the induction 
of transforming growth factor β1 (TGF-β1) and plasmino-
gen activator inhibitor-1 (PAI1) expression [44, 45].  

Oxidative stress is due to an increased amount of ROS 
in the cell that can result from decreased antioxidant activ-
ity and/or increased ROS production. ROS notably include 
superoxide anion (O-2), hydrogen peroxide (H2O2) and hy-
droxyl radical (HO-). ROS production is mainly attributed to 
the mitochondrial complexes in the electron transport 
chain, responsible for the oxidative phosphorylation, as 
well as NADPH oxidases, xanthine oxidase, nitric oxide syn-
thase. The production of these highly unstable molecules is 
a physiological process that is tightly regulated by antioxi-
dant activity, in order to prevent the negative cellular out-
come of ROS. However, in pathological conditions, antioxi-
dant activity can be exceeded or insufficient to restore the 
physiological concentration of ROS and thus lead to oxida-

FIGURE 2: Dysfunction of hepatocyte metabolism in type 2 diabetes and GSDI leads to cell stress. Type 2 diabetes is associated with 
hyperglycemia partially due to an overproduction of glucose by the liver, since G6Pase activity is increased, whereas GSDI is associated 
with hypoglycemia due to the absence of G6Pase activity. However, these two diseases share similar hepatic metabolism leading to the 
development of fatty liver. In type 2 diabetes, hyperglycemia leads to an increase of the metabolic flux downstream of G6P, whereas in 
GSDI, the absence of G6Pase activity is responsible for G6P accumulation. In both diseases, this results in an activation of de novo lipo-
genesis. In addition, GSDI is characterized by glycogen accumulation. These metabolic perturbations are responsible for cell stress such as 
ER stress. Even though mitochondrial dysfunctions were shown in both diseases, increased ROS production and oxidative stress has only 
been observed in diabetes, but not in GSDI. In GSDI, autophagy is also clearly decreased, but this is still controversial in diabetes. In both 
diabetes and GSDI, cell stress could cause DNA and protein damages, lipid peroxidation and finally, the development of hepatic tumors. 



M. Gjorgjieva et al. (2019)  Cell stress in diabetes and GSDI 

 
 

OPEN ACCESS | www.cell-stress.com 5 Cell Stress | in press 

tive stress. Indeed, during cell stress and/or mitochondrial 
insult, mitochondrial complex I and III mainly contribute to 
oxidative stress by producing O-

2
 [46]. In addition, mem-

brane-bound NADPH oxidases can be activated by inflam-
matory signals and can also lead to the production of O-

2. 
Diabetic animals present decreased hepatic activity of an-
tioxidant enzymes such as catalase and superoxide dis-
mutase 1, leading to increased ROS and hydroperoxides 
[47, 48]. The increase in ROS levels can damage lipids, pro-
teins, DNA, RNA and can affect the functioning of various 
organelles in the cell, such as the mitochondria or the en-
doplasmic reticulum (ER), thus leading to a pathological 
state in the hepatocytes [32, 48]. For example, lipid perox-
idation is a process where ROS can interact with the lipid’s 
electrons and thus alter its structure and characteristics, 
leading to important disturbances in the bi-layer lipid 
membranes of the cell, which can have strong effects on 
cell homeostasis and signalization, as well as survival. Tak-
ing into consideration that type 2 diabetes is associated 
with hepatic lipid accumulation, oxidative stress represents 
a major issue in liver function in these patients. Further-
more, ROS can easily target the reduction state of sulphur-
containing amino acids, cysteine (Cys) and methionine 
(Met) with great impact on the protein structure and/or 
enzymatic activity. Hydroxylation and carboxylation of pro-
teins mediated by ROS can also occur during oxidative 
stress. Moreover, the quantification of the latter is often 
used to assess the extent of oxidative damage in the cells 
[49]. Protein damage and aggregation can easily impact the 
functioning of the ER and thus induce ER stress. In regards 
to DNA, ROS can induce structural modifications of the 
bases, inter- and intra-strand crosslinks, induce strand 
breaks and promote DNA-protein crosslinks [50]. Indeed, 
oxidative stress-induced DNA damage has been document-
ed in diabetes [51]. Last, ROS overproduction leads to de-
pletion in adenosine triphosphate (ATP) and nicotinamide 
dinucleotide (NAD), which directly affects energy homeo-
stasis in the cell [52].  

 
ROS and lipids 
While the lipid storage capacity of adipose tissues is much 
higher than other tissues, the liver is able to store large 
amount of lipids in form of triglyceride (TG), diacylglycerol 
and cholesterol esters [53]. Hepatic lipids accumulate in 
cytoplasmic lipid droplets and form highly dynamic orga-
nelles also containing proteins, such as perilipin [54, 55]. 
Many studies suggest that TG, even in high amounts in the 
liver, when stored in lipid vesicles, are relatively inert, non-
reactive and thus rather inoffensive. While the storage of 
NEFA in form of TG represents a protective mechanism 
[56], their excessive accumulation and lipid droplet en-
largement may lead to cell damage [57, 58]. Indeed, NEFA 
spillover or the inability to store further NEFA in TG due to 
lack of capacity to further enlarge lipid droplets and the 
accumulation of specific lipotoxic compounds could lead to 
increased oxidative stress. Thus, lipids like ceramides, di-
acylglycerol and phosphatidic acid were shown to contrib-
ute strongly to insulin resistance and therefore, to amplify 
the diabetic phenotype [59, 60]. Furthermore, free choles-

terol and fatty acids are attracting more and more atten-
tion as the designated cell injury drivers in hepatic lipid-
related pathologies, due to their important reactivity with 
other components of the cell. First, increased presence of 
fatty acids in the liver can induce the production of free 
radicals. Indeed, the oxidation of fatty acids in the mito-
chondria, peroxisomes and microsomes, mediated in part 
by cytochrome P450 (CYP2E1), CYP4A10, and CYP4A14, 
results in an increase in ROS [16, 61]. Conversely, ROS are 
responsible for increased lipid peroxidation. Trans-4-
hydroxy-2-nonenal (HNE) and malondialdehyde (MDA) are 
some of the most studied lipid peroxidation products that 
can be highly toxic in the cells. These molecules can inter-
act with DNA and form etheno-DNA adducts, leading to 
carcinogenesis [62]. Moreover, aberrant lipid metabolism 
in diabetic/obese patients can lead to an induction of ER 
stress [63]. Indeed, hepatic lipid metabolism deregulation 
was shown to alter the composition of the phospholipids 
within the ER and thus perturb protein synthesis [64]. 
Moreover, protein aggregation in lipotoxic conditions can 
also induce this process. While ER stress can be induced by 
lipid misbalance, this process has an important pivotal role 
on lipid metabolism as a whole. For example, forced ex-
pression of BiP, a key negative regulator of the ER stress 
response, was shown to protect against hepatic steatosis 
by inhibiting SREBP1c mediated lipogenesis [65]. Indeed, all 
of the components of the ER stress response, which in-
cludes the IRE1a/XBP1 axis, the PERK/ATF4 axis and ATF6 
have all been shown to promote lipogenesis when activat-
ed, mainly by promoting SREBP1c expression, but also di-
rectly increasing the expression of lipogenic genes such as 
FAS, ACC and SCD1 [65]. As expected, attenuating ER stress 
in obese rodents decreases steatosis and improves insulin 
sensitivity [66].  

 
Oxidative stress and inflammation 
Oxidative stress results in an increase in apoptosis of 
hepatocytes and a subsequent release of inflammatory 
cytokines, attracting infiltration of the liver by inflamma-
tion-mediated leukocytes [67]. Pro-inflammatory media-
tors involved in hyperglycemic liver damage include inter-
leukins such as IL-1 and IL-6, nuclear factor (NF-kB), mito-

gen-activated protein kinase (MAPK), TGF-b1, poly ADP-
ribose polymerase (PARP) and tumor necrosis factor-α 
(TNFα) [31, 68–70]. Indeed, diabetic rat models confirmed 
that in the liver, the induction of TNFα results in increased 
levels of NF-kB and JNK signaling, characterized by further 
induction of inducible nitric oxide synthase (iNOS) and con-
sequent increase in nitric oxide production, as well as in-
creased apoptosis rates [71]. Specific inhibition of TNFα 
resulted in a decrease in the before-mentioned pathways, 
as well as decreased apoptosis [71]. Treatment with antiox-
idants such as Tempol also prevented lipid peroxidation 
and apoptosis induced by TNFα and iNOS and the subse-
quent oxidative stress [72]. On the other hand, increased 
circulating levels of Il-6 were found to be responsible for 
the activation of another inflammatory pathway (STAT3-
dependent) in the liver [73, 74]. While Il-6 is a mitogen 
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required for efficient regeneration of the liver, chronic Il-6 
activation could have a strong impact on the hepatocytes 
and can be involved in the development of a pathological 
state. Strikingly, other studies have shown that Il-6 can 
possibly have an anti-inflammatory role in diabetes, con-
firming that the molecular signalization in diabetes is quite 
complex [75].  

The production of these inflammatory factors is due to 
various cell types infiltrating the liver, such as neutrophils, 
macrophages and T-lymphocytes, depending on the stage 
and condition of the hepatic pathology [76]. Furthermore, 
resident cells in the liver, such as Kupffer cells (macro-
phages) and even hepatocytes can also play a major role in 
inflammation mediation. Interestingly, inflammation seems 
to play a key role in promoting the progression of NAFLD to 
steatohepatitis and further to cirrhosis and cancer. For 
example, significant infiltration of T cells is detected in pa-
tients with NAFLD and correlates with the disease severity, 
suggesting that T cells promote the progression of NAFLD 
[77]. In addition, it was shown that metabolic changes 
linked to NAFLD promote a selective inhibition of CD4+ T 
lymphocytes infiltration, while CD8+ lymphocytes were 
unaffected, leading to an acceleration of hepatic carcino-
genesis [78]. Thus, the activation of inflammatory cells in 
the liver leads to hepatocyte injury and liver fibrosis by 
producing ROS and inflammatory mediators (as described 
above). However, inflammation can also have beneficial 
effects by stimulating removal of dead cells and liver re-
generation. Thus, inflammatory cells and mediators in the 
liver could have multifaceted functions in the liver by pro-
moting pathogenesis progression of NAFLD or protecting 
hepatocytes against apoptosis, as described by Gao and 
Tsukamoto (2016) [76]. Finally, inflammation can also have 
a direct role on insulin sensitivity. Indeed, ROS can inhibit 
insulin signaling by inducing Insulin Receptor Substrate 
(IRS) degradation in peripheral tissues, thus leading to insu-
lin desensitization [79]. Similarly, TNFα was also shown to 
induce insulin resistance. 

 

HEPATIC OXIDATIVE STRESS AND INFLAMMATORY 
STATUS IN GSDI 
While deciphering the clinical aspects of GSDI is a highly 
important task, this pathology has much to offer to basic 
research as well. Indeed, GSDI is characterized by chronic 
hypoglycemia in the absence of treatment, yet in the 
hepatocytes these patients present extreme metabolic 
features comparable to those observed in diabetes. Para-
doxically, GSDI patients present increased risk of insulin 
resistance even though they suffer from hypoglycemia, 
when they are not under optimal nutritional care [80]. In 
order to study GSDI, several mouse models have been de-
veloped, including total deletion and liver-specific deletion 
of the gene encoding the catalytic subunit of the G6Pase 
(G6pc) [81, 82]. Total deletion mouse models present se-
vere hypoglycemia especially in the absence of oral or in-
jected glucose, leading to premature death in these mice 
after weaning. However, liver-specific G6pc-deficient 
(L.G6pc-/ -) mice are viable, rendering this model particular-

ly well suited for long-term studies. Indeed, L.G6pc-/ - mice 
can produce glucose from their kidneys and intestine dur-
ing fasting [83]. Both of these models develop the hepatic 
pathology observed in GSDI patients, including hepato-
megaly and hepatic steatosis, associated with hypercholes-
terolemia and hypertriglyceridemia [81, 82]. 

 
Mitochondrial dysfunction and ROS 
Mouse models have generated interesting data in regards 
to cell stress associated with GSDI. As previously men-
tioned, G6Pase deficiency leads to hepatocyte metabolism 
characterized by the activation of glycolysis, de novo lipo-
genesis, PPP and glycogen synthesis [22, 23]. Interestingly, 
hepatic mitochondrial dysfunction was reported, along 
with a striking decrease in basal respiration, ATP turnover, 
maximal respiration, and spare mitochondrial capacity [84]. 
The structure of mitochondria was abnormal and the mito-
chondrial content was also decreased, probably due to 
decreased biogenesis. Another study confirmed this result 
in L.G6pc-/ - mice, showing that lipid-mediated Sirtuin1 
(SirT1) down-regulation entails a decrease in peroxisome 
proliferator-activated receptor-γ coactivator 1α (PGC-1α), 
and thus alters mitochondrial integrity, biogenesis, and 
function in GSDI hepatocytes [85]. The mitochondrial apop-
tosis pathway is also activated [84]. Indeed, an increase in 
cytochrome c release, as well as activation of caspases 9 
and 3 were reported in G6pc-knock down cells. Finally, 
mitochondrial dysfunction was linked to insulin resistance 
[80]. Despite this pathological mitochondrial phenotype, 
ROS levels were not increased in the cells, leaving room to 
speculate that oxidative stress might not be present in the 
case of GSDI. Furthermore, increased circulating levels of 
antioxidants reported in GSDI patients could contribute to 
the protection against oxidative stress [86]. Elevated circu-
lating antioxidants could also protect GSDI patients against 
atherosclerosis, despite hyperlipidemia [87, 88]. It is note-
worthy that hyperuricemia, albeit a pathological state, can 
also provide antioxidant defense, since plasma uric acid is 
also a potent low-molecular-weight antioxidant. However, 
within the cell, uric acid can have pro-oxidative roles as 
well, by forming radicals with other oxidants, rendering the 
effect of this metabolite in GSDI complex [89]. 

Since in GSDI the capacity of G6P storage under the 
form of glycogen is chronically exceeded, G6P activates de 
novo lipogenesis and leads to hepatic steatosis. Hepatic 
steatosis in GSDI is also enhanced by a decrease in lipid 

b–oxidation. This catabolic pathway was shown to be 
down-regulated in the liver of L.G6pc-/ - mice [90], with a 
concomitant down-regulation of the main activator of 

b–oxidation, PPARα. It has been suggested that the pro-
duction of malonyl CoA by acetyl CoA carboxylase (ACC) 
during lipogenesis could further contribute to the decrease 
in β–oxidation in GSDI livers. Interestingly, a reactivation of 
PPARα in the liver of L.G6pc-/ - mice via its agonist, feno-
fibrate, resulted in a normalization of the hepatic TG con-
tent and thus a complete disappearance of hepatic steato-
sis in these mice [91]. Strikingly, fenofibrate treatment 
resulted in a normalization of the glycogen content in 
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L.G6pc-/ - mice as well. Finally, a decreased activity of AMP-
activated protein kinase (AMPK) in GSDI hepatocytes might 
also contribute to impaired fatty acid oxidation and in-
creased fatty acid and cholesterol synthesis [92]. AMPK 
regulates these processes by decreasing malonyl CoA pro-
duction via ACC inhibition and via the control of SREBP1 

and ChREBP activities. A decrease in b–oxidation could 
thus contribute to the absence of increased ROS in GSDI 
livers. 

 
Autophagy 
Interestingly, altered lipid metabolism affects autophagy in 
GSDI hepatocytes (Figure 2). Indeed, lipid accumulation 
due to increased ChREBP and decreased PPARα results in a 
decreased SIRT1/FOXO signaling and thus in the absence of 
autophagy activation [93]. Since SIRT1 is down-regulated 
during lipogenesis, it entails a vicious cycle between lipid 
accumulation and autophagy in GSDI. Indeed, SIRT1 is 
blocked due to lipid synthesis, which subsequently blocks 
autophagy and leads to further lipid accumulation. Besides 
lipids, other metabolites, proteins and even dysfunctional 
organelles remain non-recycled and lead to cell stress or 
even contribute to malignancy. In accordance, the re-
activation of autophagy pathway in GSDI resulted in an 
increase in lipid degradation, associated with an improved 
hepatic histology [92]. It is noteworthy that in L.G6pc-/ - 
mice autophagy was found activated in the hepatic tumors, 
compared to the surrounding non-tumoral tissue [27]. As 
observed in many cancer types, this activation of autopha-
gy in GSDI tumors could facilitate their progression by 
providing malignant cells with substrates for rapid prolifer-
ation, as well as a protective role against cell necrosis and 
inflammation [94]. 

Autophagy is a process that is considered as regulated 
by mTOR, AMPK and SIRT1 [95]. In the case of GSDI, au-
tophagy was shown to be independent from mTOR signal-
ing, since mTOR inhibition using Temsirolimus did not lead 
to autophagy activation in L.G6pc-/ - mice [27]. As men-
tioned earlier, AMPK is strongly down-regulated in GSDI 
livers due to their energetic state, leaving only SIRT1 as a 
master regulator. 

As observed in GSDI, NAFLD and diabetes can also be 
characterized by a decrease in autophagy. However, con-
tradictory results showing ER stress-mediated induction of 
autophagy in obesity, rather than a decrease, have been 
reported as well. This highlighted that the levels of insulin 
resistance, steatosis and the overall state of the hepato-
cytes have a role to play in the outcome of this process 
[96]. Interestingly, one of the metabolites by which au-
tophagy decrease in obesity can be mediated is nitric oxide. 
Indeed, obesity promotes S-nitrosylation of lysosomal pro-
teins in the liver, thereby impairing lysosomal enzyme ac-
tivities, and further facilitating hepatic steatosis and insulin 
resistance [97]. The canonical pathways regulating autoph-
agy are involved in autophagy repression as well. Indeed, 
over-nutrition provides increased availability of amino ac-
ids and glucose in obesity, which can constitutively activate 
mTOR and inhibit AMPK, resulting in autophagy repression 

[98]. Lipids, as in GSDI, can also contribute to autophagy 
inhibition. However, as lipids constitute a great family of 
molecules with different attributes, their differential ef-
fects on autophagy can vary greatly. For example, oleic 
acid was shown to induce autophagy, whereas palmitic 
acid suppresses this process [99]. Thus while in GSDI au-
tophagy was proven to be systematically repressed, this is 
not always true in diabetes and obesity, probably due to 
the variability in the etiology, the staging of the pathology 
and the variable environment in diabetic and/or obese 
patients. 

 
Inflammatory status in GSDI livers 
Despite the important levels of accumulated glycogen and 
lipids in the liver, as well as the important metabolic imbal-
ance, GSDI patients present low-grade hepatic inflamma-
tion [19, 100]. However, a significant elevation of serum 
Il-8 levels was reported in patients bearing tumors, posi-
tively correlating with neutrophilia and hepatic neutrophil 
infiltration [100]. Hepatic transaminase (AST/ALT) levels 
are also usually normal, especially in patients with optimal 
metabolic control and patients not bearing hepatic tumors 
[100]. 

The absence of oxidative stress and inflammatory re-
sponses in the case of GSDI might be the reason as to why 
hepatic fibrosis is not associated with GSDI [19]. Indeed, 
GSDI patients and related animal models do not present 
fibrosis in the liver, contrarily to other types of glycogen 
storage diseases. Consequently, these patients do not de-
velop cirrhosis. However, they present a highly elevated 
risk of hepatic malignancy, characterized by a specific tu-
morigenic process described below. 

 

HEPATIC CARCIOGENESIS IN DIABETES AND GSDI 
Nowadays it is becoming more and more evident that dia-
betes is associated with chronic liver disease [101], leading 
to an important risk of hepatocellular carcinoma (HCC) 
development [78–80]. Interestingly, it was suggested that 
similar pathways are activated in both diabetes and hepa-
tocellular cancer [102, 105]. For example, the Insu-
lin/ Insulin Growth factor 1 (IGF1) signalization pathway 
and the subsequent activation of mTOR are increased in 
both cases. In hyperinsulinemic conditions, insulin exerts a 
mitogenic role, rather than a metabolic role, which is highly 
beneficial for HCC progression [106]. Furthermore, the 
aforementioned inflammatory mediators such as TNFα and 
Il-6 can also contribute to hepatic cancer development. 
Last, taking into account that cancer cells are often highly 
dependent on free glucose fueling the Warburg effect, 
chronic hyperglycemia is ideal for their rapid progression. 
In addition, hyperglycemia was shown to induce nuclear 
β–catenin accumulation in cancer cells, which could be yet 
another trigger of tumorigenesis in diabetes [107]. 

Interestingly, lipid-mediated expression of TNFα and 
oxidative stress are responsible not only for cell injury, 
inflammation, necrosis, but also for activation of stellate 
cells inducing fibrosis [108, 109]. Indeed, in the livers ex-
posed to chronic injury, stellate cells promote the devel-
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opment of fibrosis through excessive extracellular matrix 
(ECM) production and reduced ECM degradation [110]. 
Reduced adiponectin levels can also potentiate the fibro-
genic process [111]. Fibrosis is a common end point to 
chronic inflammation in insulin-resistant livers and it can 
be further stimulated by Kupffer cells, the resident hepatic 
macrophages. The formation of Mallory-Denk bodies, 
composed of misfolded intermediate filaments, ubiquitin, 
heat shock proteins, and p62, can be observed during fi-
brogenesis [112]. Hepatic fibrosis can further evolve to 
cirrhosis and HCC development (Figure 3). Linking cirrhosis 
and diabetes is very complex since cirrhosis itself is linked 
to insulin resistance [113]. Indeed, around 30% of patients 
with hepatic cirrhosis present diabetes, while cirrhosis is 
not necessarily induced by obesity / diabetes [114].  

It is noteworthy that an important fraction of obese pa-
tients develop HCC in the absence of liver cirrhosis as well 
[115, 116]. Indeed, around 54% of NAFLD patients diag-
nosed with HCC were not classified as cirrhotic, as opposed 
to only 22% of Hepatitis C virus (HCV) patients [117]. Thus 
hyperglycemic/hyperlipidemic conditions in obesity could 
favor hepatic hyperplasia development that can acquire 
malignant traits in the absence of cirrhosis and transform 
into HCC (Figure 3B). HCC can also arise de novo due to 
extensive DNA damage and mutations occurring as a result 
of chronic oxidative stress. Therefore, clinical surveillance 
of the liver in obese patients is recommended even in the 
absence of fibrosis/cirrhosis, in order to successfully pre-
vent hepatic malignancy. 

 

FIGURE 3: Different models of hepatocellular carcinoma development. The canonical model of hepatocellular carcinoma (HCC) devel-
opment (A) stipulates that patients with hepatic steatosis further develop inflammation / immune cell infiltration and fibrosis. Later on, 
excessive fibrosis and inflammation can lead to cirrhosis development and HCC. However, alternative models of hepatocarcinogenesis (B) 
have been observed in obese / GSDI patients. Indeed, steatotic patients, who do not present cirrhosis, can also develop HCC de novo, 
since fatty livers are favorable for carcinogenesis. Moreover, in GSDI patients, HCC can develop in non-fibrotic, non-cirrhotic liver. These 
tumors arise from the transformation of hepatocellular adenoma (HCA) to HCC. 
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GSDI patients also present an increased risk of hepatic 
tumor development. Indeed, around 50% of young adult 
patients present at least one hepatocellular adenoma 
(HCA) [118]. There is a high risk (about 10%) of 
transformation of HCA into HCC, and this rate is 
significantly higher in GSDI patients compared to non-GSDI 
patients. As opposed to HCC patients in the general 
population, hepatic fibrosis/cirrhosis is absent in GSDI, and 
therefore de novo formation of HCC has never been 
reported. Indeed, all HCC probably arise from a malignant 
transformation of HCA into HCC (Figure 3B). Thus, 
malignancy development in GSDI is a very particular linear 
process, characterized by hepatic steatosis installation, 
followed by HCA formation, which can later transform into 
HCC. The exact mechanisms behind this elevated tumor 
incidence in GSDI are not fully understood. However, the 
metabolic context in the liver of GSDI patients and animal 
models could provide a favorable environment for 
tumorigenesis [26]. As mentioned before, increased 
glycolysis and subsequent lactate production, elevated 
lipogenesis and PPP are just some of the metabolic 
alterations observed in GSDI livers. These metabolic traits 
are associated to the Warburg effect, a metabolic process 
infamously affiliated with cancer. Thus in GSDI, the liver 
itself is characterized by a cancer-like metabolism, 
potentially facilitating tumor formation and progression. 

 
FINAL REMARKS 
Metabolism and regeneration 
As discussed above, the effects of glycemic imbalance are 
mostly studied in the central nervous system, the pancreas, 
in retinopathies and nephropathies, yet, hepatic damage 
assessment is often overlooked. This is in part due to the 
exceptional plasticity of the liver and the extraordinary 
detoxification and regeneration mechanisms that it pos-
sesses. Indeed, this organ is capable of efficient regenera-
tion after resection. This process has fascinated mankind 
since the beginning of medical research, and it has been 
extensively studied. Some of the facets of liver regenera-
tion remain unknown; however, it has been shown that 
metabolic aspects are highly important. 

Indeed, liver regeneration after partial resection de-
picts perfectly the plasticity of the metabolism of the liver 
and how metabolic switches can be crucial in pathophysi-
ology. For example, transient hepatic steatosis appearing 
right after resection has been reported and described as 
indispensable for proper regeneration and proliferation of 
the liver, in order for the hepatocytes to repopulate the 
liver [119]. In contrast, under these conditions glucose 
homeostasis is understandably disturbed, since the regen-
erating liver cannot completely assure the role of the main 
glucose-producing organ. This depends on the extent to 
which the organ is resected, the physiopathological condi-
tion of the remaining liver, as well as the overall health 
state of the patient. Thus, regeneration of the liver can 
lead to hypoglycemia, as often confirmed in many rodent 
models and patients with partial hepatectomy [120]. Inter-
estingly, supplementing the liver with glucose during this 

phase can have a negative impact on regeneration [120, 
121]. Given that hypoglycemia is thought to induce lipolysis 
in peripheral organs, facilitating the induction of transient 
hepatic steatosis needed for regeneration, this outcome is 
expected, yet it renders post-operative patient care com-
plex. Moreover, hepatic ischemic episodes have been 
shown to alter glucose metabolism in the liver by switching 
from oxidative phosphorylation to a more proliferative-
compatible metabolism, characterized by activation of 
glycolysis (the Warburg effect). 
 
Antioxidants against hyperglycemic damages and hepatic 
tumors  
Since hyperglycemia is strongly associated with oxidative 
stress, the use of antioxidants in diabetes or in prevention 
or curative strategies for HCC constituted tempting ap-
proaches of treatment. Interestingly, various antioxidant 
agents such as metformin, Nfr2 agonists, Vitamin C and E, 
resveratrol, as well as different plant extracts have been 
used in HCC patients and patients at risk of HCC. The out-
comes in these strategies varied greatly among the studies 
and were described as both pro- and anti-oncogenic [122, 
123]. While increased ROS in the cell can be responsible for 
serious alterations of the DNA and other cell components, 
it is noteworthy that these molecules are important signal-
ing agents, physiologically needed for the activation of 
certain defenses in the cell under pre-pathological condi-
tions. Thus it seems important to emphasize that prevent-
ing this signalization with antioxidants could be harmful, 
rather than beneficial. As antioxidants are widely popular 
in the general population and not only in scientific circles, 
several misconceptions have been previously highlighted 
[124]. Indeed, the quantity, the type of antioxidants and 
the duration of the treatment may have an enormous im-
pact on the outcome for the patient.  

While many studies depict the effects of antioxidants in 
diabetic/obese patients, assessment of the effects of these 
drugs in GSDI patients is nearly impossible to perform, 
firstly because of the small number of patient cohorts, but 
also due to the various treatments that these patients re-
ceive in parallel, such as hypolipidemic and hypouricemic 
agents. However, a study in L.G6pc-/ - mice using the anti-
oxidant Tempol showed that while this treatment managed 
to increase the hepatic expression of Catalase and GPx1, it 
did not have an impact on carcinogenesis [27].  

Last, studies have shown that under some circum-
stances cancer cells can also be more sensitive to oxidative 
stress than the surrounding healthy cells [125]. Therefore, 
inducing oxidative stress in tumor cells is also an attractive 
strategy to combat tumor progression [126]. To conclude, 
the redox levels in cancer and the surrounding healthy 
tissue can vary greatly and one unique approach is not 
applicable in all patients. 
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