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ABSTRACT  Despite enormous social and scientific efforts, obesi-
ty rates continue to increase worldwide. While genetic factors 
contribute to obesity development, genetics alone cannot ex-
plain the current epidemic. Obesity is essentially the conse-
quence of complex genetic-environmental interactions. Evi-
dence suggests that contemporary lifestyles trigger epigenetic 
changes, which can dysregulate energy balance and thus con-
tribute to obesity. The hypothalamus plays a pivotal role in the 
regulation of body weight, through a sophisticated network of 
neuronal systems. Alterations in the activity of these neuronal 
pathways have been implicated in the pathophysiology of obesi-
ty. Here, we review the current knowledge on the central con-
trol of energy balance with a focus on recent studies linking epi-
genetic mechanisms in the hypothalamus to the development of 
obesity and metabolic disorders. 
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INTRODUCTION 
The prevalence of obesity continues to increase worldwide. 
This trend is of concern because of its dramatic economic 
impact, concomitant decreased lifespan and increased 
comorbidities, such as hypertension, cardiovascular dis-
eases, type 2 diabetes (T2D) and cancer [1–3]. Only in Eu-
rope alone, the (direct and indirect) cost of obesity is esti-
mated to be around 81 billion of euros per year. 

The most basic definition of obesity refers to an exces-
sive and/or abnormal accumulation of fat. Obesity is con-
sidered to be the consequence of an imbalance between 
energy intake and expenditure [6]. Thus, altered feeding 
behavior (chronic overeating) and a sedentary lifestyle 
(chronic low energy expenditure) are important contribu-
tors to the development of overweight and obesity.  

The brain, and in particular the hypothalamus, plays an 
essential role in maintaining energy homeostasis. Specific 
neuronal circuits in the hypothalamus sense and decode 
multiple nutritional, hormonal and metabolic cues to fine-
tune food intake and energy expenditure. However, envi-
ronmental factors, such as the diet, physical activity or 
exposure to certain chemicals, can impair the hypothalam-
ic mechanisms controlling appetite and energy balance [7–
11]. At the molecular level, epigenetic processes might play 
a fundamental role in the complex interactions between 
environment and energy imbalance seen in obesity [12].  

In this review, we discuss epigenetic determinants in 
hypothalamic pathways controlling energy homeostasis 
and its association with the development of obesity and 
metabolic syndrome. 
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Abbreviatons: 
5-mC – 5-methylcytosine, α-MSH – α-melanocyte-
stimulating hormone, AgRP – agouti-related protein, 
AMPK – AMP-activated protein kinase, ARC – arcuate 
nucleus, DNMT – DNA methyltransferases, GABA – γ-
aminobutyric acid, GWAS – genome-wide association 
studies, HAT – histone acetyltransferase, HDAC – 
histone deacetylase, LH – lateral hypothalamus, 
lncRNA – long ncRNA, MCR – melanocortin receptor, 
miRNA – micro RNA, mRNA – messenger RNA, ncRNA 
– non-coding RNA, NPY – neuropeptide Y, POMC – pro-
opimelanocortin, PTM – post-translational 
modification, PVN – paraventricular nucleus, snoRNA – 
small nucleolar RNA, snRNA – small nuclear RNA, T2D 
– type 2 diabetes, VMH – ventromedial hypothalamus. 
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OBESITY IS AT THE INTERPLAY BETWEEN GENETIC AND 
ENVIRONMENTAL FACTORS  
Energy imbalance is an important contributor of body 
weight gain; however, the pathophysiology of obesity has 
proven to be much more complex. Research into mono-
genic obesity has resulted in the identification of single 
genes that dramatically affect body weight through hypo-
thalamic pathways [14–17]. Yet, mutations in those genes 
are relatively rare and account for only ≈5% of obese pa-
tients [18]. Genome-wide association studies (GWAS) have 
emerged as a valuable tool to identify novel genetic factors 
contributing to obesity [19, 20]. GWAS have identified nu-
merous single nucleotide polymorphisms (SNPs) associated 
with body mass index (BMI), and again have highlighted 
the importance of neuronal pathways to obesity [19, 21]. 
However, genetics alone cannot explain the rather recent 
and steadfast increase in worldwide obesity rates. At this 
point, it is clear that obesity stems from the interaction of 
susceptibility genes with multiple environmental factors 
(Figure 1). 

There are critical periods in the prenatal and perinatal 
phases that are particularly susceptible to the impact of 
environmental factors. The metabolic imprinting during 
those periods, might influence the future development of 
obesity from infancy to the onset of adulthood. Epidemio-
logical studies in humans have shown that maternal obesi-
ty and diabetes during fetal life and lactation are risk fac-
tors for the future development of obesity [22–24]. Like-
wise, maternal undernutrition was also shown to influence 
offspring predisposition to metabolic disorders [25, 26]. 

 

In the hypothalamus, maternal nutritional insults dur-
ing development have been shown to affect the function of 
hypothalamic circuits that regulate energy balance. For 
instance, maternal undernutrition in rodents alters the 
activity of appetite and satiety centers in the offspring [27, 
28]. This is accompanied by an impairment in neuronal 
proliferation, axonal elongation and neuropeptide expres-
sion in the hypothalamus [29–31]. Similarly, maternal 
overnutrition has been shown to damage axonal projec-
tions in the hypothalamus [32–34]. Hormonal imbalance 
during pregnancy can also lead to defects in hypothalamic 
circuits [34, 35]. It is unclear in what way these environ-
mental factors influence the function of brain pathways 
controlling energy balance. However, over the past two 
decades, several studies have underscored the importance 
of epigenetic gene regulation. 

 

REGULATION OF ENERGY HOMEOSTASIS BY THE BRAIN 
The brain acts like the central processing unit of a comput-
er to control energy homeostasis. It integrates internal 
metabolic signals (i.e. nutrients and hormones) and exter-
nal sensory cues regarding food availability and palatability 
[36, 37]. These signals provide information about the type 
of circulating fuels available in the organism, as well as the 
amount of energy stored and needed. The areas governing 
energy balance include important parts of the limbic sys-
tem, midbrain, brainstem and cortex. However, ≈80 years 
of research have unquestionably shown that the hypothal-
amus is the quintessential brain region in the control of 
homeostatic food intake and energy homeostasis [38]. 
 

FIGURE 1: Obesity is at the interplay between genetic and environmental factors. The development of obesity is influenced by genetic 
and environmental factors. The study of monogenic obesity has led the discovery of several obesity susceptibility genes such as Proop-
imelanocortin (POMC), Melanocortin receptor 4 (MC4R) or Leptin (LEP) among others. However, diverse environmental factors such as the 
diet, combined with genetic variations, also influence energy balance control. 
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Arcuate nucleus of the hypothalamus 
The arcuate nucleus (ARC) resides in the medial-basal part 
of the tuberal hypothalamus, on both sides of the third 
ventricle (3V) so it receives input from other regions of the 
brain through the cerebrospinal fluid [39]. The ARC is also 
in direct contact with the median eminence, an area of the 
brain where the blood-brain barrier is semi-permeable [40]. 
This strategic position within the brain, allows the ARC to 
sense the circulating levels of nutrients and hormones. In 
the ARC, there are two subsets of neurons playing critical 
functions in the regulation of appetite and energy expendi-
ture: i) orexigeneic neurons that co-express agouti-related 
protein (AgRP) and neuropeptide Y (NPY) (hereafter AgRP 
neurons) and ii) anorexigeneic neurons expressing pro-
opimelanocortin (POMC) (hereafter POMC neurons).  
 
AgRP neurons and the orexigenic pathway 
AgRP neurons are stimulated by fasting and send intra-ARC 
projections to POMC neurons and other hypothalamic 
structures such as paraventricular nucleus (PVN), lateral 
hypothalamus (LH) and parabrachial hypothalamus (PBN) 
[41, 42]. AgRP is an orexigenic (i.e. appetite-stimulating) 
neuropeptide that is exclusively expressed in the ARC and 
acts as an inverse agonist to melanocortin receptors MC3R 

and MC4R [43, 44]. AgRP inhibits -melanocyte-stimulating 

hormone (-MSH) signaling exclusively in the PVN to regu-
late feeding [45]. Conversely, NPY is widely expressed out-
side the ARC and exerts its orexigenic effect through NPY 
receptors (NPY1R to NPY5R) [46]. AgRP and NPY are both 
primary drivers to initiate food intake, as central injection 
of either neuropeptide causes hyperphagia [43, 47, 48]. 
However, deletion of Agrp or Npy genes in mice have 
shown no effect on food intake and body weight [49]. Sev-
eral studies have consolidated our understanding of the 
function of AgRP neurons. For instance, ablation of AgRP 
neurons in adult mice results in severe anorexia [42, 50], 
while acute activation of those neurons by optogenetic or 
chemogenetic means leads to a robust increase in food 
intake [51, 52]. In addition, AgRP neurons can inhibit other 

neurons via -aminobutyric acid (GABA) action in the ARC 
(i.e. POMC neurons) and in other areas of the brain [53–56]. 
Remarkably, GABAergic inputs from AgRP neurons can 
modulate food intake by acting in the PVN [53]. These dis-
coveries highlight the importance of GABA signals from 
AgRP neurons in the regulation of energy balance, through 
the inhibition of anorexigenic neuronal populations all over 
the brain [57]. 
 
POMC neurons and the central melanocortin system 
POMC neurons project mainly to the PVN but also to the 
LH, the ventromedial hypothalamus (VMH) and dorsome-
dial nucleus (DMN) [58]. POMC neurons produce the pro-
hormone POMC, which expression is restricted to the ARC 
and the nucleus of the solitary tract (NTS) of the brainstem 
[59, 60]. POMC precursor is cleaved into diverse neuropep-

tides including -MSH, which binds MC4Rs resulting in a 
reduction in appetite and enhanced energy expenditure 
[44, 61–63]. Consistently, Pomc or Mc4r deficiency causes 

hyperphagia and obesity in both mice and humans [16, 17, 

64–66]. In addition, -endorphin (a POMC-derived neuro-
peptide) is released from ARC neurons and regulates feed-
ing after binding to the opioid receptor [67]. Recent inves-
tigations using optogenetic and chemogenetic approaches 
have confirmed the role of POMC neurons in feeding con-
trol and energy homeostasis [52, 68]. Acute chemogenetic 
stimulation of POMC neurons in the dark phase (a natural 
feeding period) suppresses food intake whereas consump-
tion of a meal increases their activity, which supports the 

role for -MSH in short-term feeding control [69]. However, 
prolonged activation of POMC neurons is necessary to 
suppress food intake during the light phase, suggesting 

that -MSH might be as well involved in long-term regula-
tion of energy homeostasis [52, 68]. Indeed, deep brain 
imaging studies have shown that POMC neurons are grad-
ually and persistently depolarized by leptin [37]. Altogether, 

these data point towards a role of -MSH in long- and 
short-term energy balance. At this time, the mechanisms 
underlying these two distinct effects remain unknown. 

POMC, AgRP and MC4R-expressing neurons constitute 
the central melanocortin system. This is arguably the best-
characterized neuronal network involved in energy balance 
control. The melanocortin system is characteristically com-

posed of fibers that express both agonists (-MSH) and 
antagonists (AgRP) of the melanocortin receptors and re-
ceives inputs from hormones, nutrients and afferent neural 
circuits [15, 70–74]. 

In addition to neuropeptides, hypothalamic neurons 
can respond to nutrients by modifying the synthesis and/or 
activity of cellular energy sensors. In the last decades, 
many evidences have shown that hypothalamic AMP-
activated protein kinase (AMPK) is a nutrient and energy 
sensor that controls whole-body energy homeostasis [75–
77]. Nonetheless, in the hypothalamus AMPK integrates 
the orexigenic and anorexigenic pathways [78]. Genetic 
evidences have shown that mice lacking Ampk in POMC or 
AgRP neurons display an impaired energy balance along-
side alteration on body weight and glucose homestasis [75].  

 

EPIGENETIC GENE REGULATION 
The term epigenetics was defined by the developmental 
biologist Conrad Waddington in 1942 [79]. Currently, the 
accepted definition of epigenetics is “stably heritable phe-
notype resulting from changes in a chromosome without 
alterations in the DNA sequence” [80]. In general, it is 
acknowledged that epigenetic is an additional regulatory 
layer for gene expression control. There are several epige-
netic modifications that can change chromatin structure, 
including DNA methylation, post translational modification 
of histone tails and regulatory RNAs. 
 
DNA methylation 
DNA methylation was the first epigenetic mark discovered 
[81]. It is a stable covalent modification that mostly occurs 
on DNA regions where a cytosine is followed by a guanine 
(CpG) and is catalyzed by a family of enzymes called DNA 
methyltransferases (DNMT). These enzymes add a methyl 
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group on the 5th carbon of a cytosine to generate a  
5-methylcytosine (5-mC). In mammals, there are three 
DNMTs: DNMT1, DNMT3a and DNMT3b. DNMT1 maintains 
DNA methylation during replication [82]. DNMT3a and 
DNMT3b are responsible for de novo methylation [83]. 
DNA methylation has many biological functions including X 
chromosome inactivation, the monoallelic expression of 
imprinted genes and transcriptional repression of trans-
poson-derived sequences [84, 85].  

For many years, DNA methylation was considered a 
permanent epigenetic modification that could not be re-
moved. However, this concept has been challenged in re-
cent years with the discovery of ten eleven translocation 
(TET) enzymes, which catalyze crucial steps for an oxidative 
demethylation reaction thus providing a mechanistic basis 
for an active DNA demethylation pathway [86, 87]. In the 
brain, DNA methylation appears to be particularly im-
portant. On one hand, DNMT1 and DNMT3a are highly 
expressed in post-mitotic neurons when compared to oth-
er cell types and double knock-out mice for these proteins 
show alterations in neuronal plasticity [88]. On the other 
hand, 5-mC is very abundant in the brain, particularly in 
the hypothalamus, cortex and hippocampus [89].  

DNA methylation is not only restricted to CpG dinucleo-
tides. Several relatively recent studies have revealed high 
levels of methylation in non-CpG cytosines (mCH, where 
methylated cytosine is followed by an adenine, thymidine 
or cytosine) [90–92]. In the brain, methylation of mCH sites 
is very dynamic when compared to CpG islands and it oc-
curs during central nervous system maturation in the early 
years of life [90]. These novel insights have raised new and 
exciting questions regarding the functional role of mCH in 
the brain. 
 
Histone post-translational modifications 
Chromatin is a complex of DNA wrapped around a nucleo-
some, which is composed of canonical histones H2A, H2B, 
H3 and H4 [93]. Nonetheless, DNA has to be accessible to 
allow molecular processes like transcription, DNA repair 
and replication. Compelling evidence have shown that 
post-translational modifications (PTMs) of histone tails can 
modulate chromatin structure and hence transcriptional 
activity. Histone tails can undergo a large variety of PTMs 
including acetylation and methylation among others [94].  

Histone acetylation is defined by the addition of an ac-
etyl group on a lysine or an arginine residue of histone tails 
[95]. It is catalyzed by specific histone acetyltransferases 
(HAT) [96]. Histone acetylation is reversible, as histone 
deacetylases (HDACs) can remove the acetyl groups from 
histone tails. HDACs are classified in four classes (I, II, III 
and IV) according to their functions and DNA sequence [97]. 
Histone acetylation plays a role in chromatin assembly and 
participates in the regulation of gene expression [98]. At 
the molecular level, it is believed that histone acetylation 
increases the accessibility of transcription factors to DNA 
by lowering the affinity between histones and DNA [98].  

Histone methylation occurs mainly on arginine, lysine 
and histidine [99, 100]. Specific histone methyltransferases 
(HMT) catalyze the addition of one or more methyl groups 

to histone tails [101]. SET-domain containing, and DOT1-
like methyltransferases are specific for lysine, while N-
methyltransferases (PRMT) are specific for arginine [102]. 
Histone methylation was believed to be irreversible until 
the discovery of the H3K4 lysine-specific demethylase 1A 
(KDM1A or LSD1) [99, 103]. Since then, many other deme-
thylases have been identified [103, 104]. Overall, histone 
acetylation and methylation are the most studied histone 
PTMs, due to their effects in gene expression, and are sys-
tematically used to map chromatin structure across the 
genome. 
 
Non-coding RNA  
Non-coding RNAs (ncRNAs) are relatively new concept in 
epigenetics. These molecules make up the majority of the 
transcriptome but, unlike messenger RNA (mRNA), ncRNAs 
are transcribed from DNA but not translated into protein. 
There are three different types of ncRNAs [105, 106]: (i) 
small nuclear RNAs (snRNAs) and small nucleolar RNAs 
(snoRNAs); (ii) interference RNA, including micro RNAs 
(miRNAs); and (iii) long ncRNAs (lncRNAs). 

snRNAs and snoRNAs are involved in the processing 
and regulation of other RNAs such as mRNA and ribosomal 
RNA (rRNA). miRNAs are short ncRNAs (≈22 nucleotides in 
length) that regulate gene expression via mRNA silencing 
[105]. Normally, miRNAs bind to complementary mRNA 
target sequences and either inhibit their translation or 
cause the degradation of the mRNA [105]. lncRNAs are 
large RNA molecules localized in the cytoplasm or the nu-
cleus with a length of more than 200 nucleotides. Despite 
lncRNAs being thought to account for the majority of the 
ncRNA transcriptome, their discovery is still at a prelimi-
nary stage and few lncRNAs have been characterized in 
detail so far. However, it is clear that lncRNAs are im-
portant regulators of gene expression through a wide vari-
ety of mechanisms [106, 107]. 

 

EPIGENETICS OF ENERGY BALANCE CONTROL IN THE 
HYPOTHALAMUS 
Numerous studies have revealed that epigenetic mecha-
nisms are involved in many aspects of metabolic dysfunc-
tion. Genomic data indicate that obesity and T2D are asso-
ciated with altered DNA methylation patterns at specific 
loci [108, 109]. Similarly, growing evidence links PTMs of 
histone tails with metabolic disease, especially T2D [110]. 
Moreover, epigenetic modifications can explain the molec-
ular mechanisms underlying fetal programming and its 
association with metabolic disorders [12, 111]. 

The epigenetic-dependent regulation of metabolism is 
reciprocal, as many metabolites and nutrients can serve as 
substrates/co-factors for epigenetic-modifying enzymes. 
Therefore, changes in the concentration of particular me-
tabolites should be considered as a novel signaling cue 
implicated in the control of gene expression (Figure 2). For 
instance, acetyl-CoA derived from glucose and fatty acid 
metabolism directly impacts the chromatin architecture by 
modulating the activity of chromatin-modifying enzymes 
[112, 113]. Moreover, nutrient sensors such as AMPK di-
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rectly regulate epigenetic processes. For example, activat-
ed AMPK can modify the activity of several HATs and there-
fore impact histone acetylation [114, 115]. Yet, AMPK im-
pact on epigenetic is not limited to histone acetylation as it 
has been shown to also influence DNA methylation and 
other histone PTMs [116]. In this context, it seems reason-
able that diet insults may cause epigenetic perturbations in 
the neurons of the brain governing energy balance.  
 
Hypothalamic DNA methylation and energy balance con-
trol 
An excellent example of the influence of epigenetic gene 
regulation is shown by the Agouti (Avy) mouse model, in 
which genetically identical mice can have a completely 
different phenotype in terms of both color and size. The 
Agouti gene promotes a yellow mouse coat color and af-
fects energy metabolism through inhibition of the melano-
cortin signaling [117]. This gene is regulated in part by the 
methylation status of a transposable element (IAP) located 
in its promoter. Accordingly, mice showing a methylated 
IAP have a normal body weight and are brown while an 
unmethylated promoter generates yellow mice that are 
prone to obesity [118]. In Avy mice, maternal supplementa-
tion with folic acid, a form of vitamin B9 critical for DNA 
and protein methylation, results in a shift towards the lean 
phenotype in the offspring [118]. Conversely, fetal or neo-
natal exposure to the endocrine disruptor bisphenol A is 

associated with higher body weight and unmethylation of 
the Agouti gene [119].  

Maternal undernutrition has been shown to decrease 
the activity of hypothalamic DNMTs [120]. Maternal stress, 
which predisposed the female offspring to binge eating 
(BE)-like behavior, also altered the expression of hypotha-
lamic DNMTs, causing hypomethylation of hypothalamic 
miR-1a and downstream dysregulation of the melanocortin 
system [121]. Moreover, these alterations could be revert-
ed by a methyl-balanced diet during puberty [121].  

Numerous reports have evaluated the impact of DNA 
methylation on the expression of key metabolic genes in 
the hypothalamus. For instance, overfeeding altered the 
methylation status of Pomc promoter in rat [122]. Similarly, 
maternal undernutrition changed the methylation of Pomc 
promoter in sheep [111, 123]. In addition, Pomc promoter 
methylation was decreased in a model of rats resistant to 
diet-induced obesity [124]. More importantly, methylation 
of CpGs at the intron2–exon3 junction of POMC gene is 
higher in obese children as compared to normal-weight 
individuals. Insulin signaling in the hypothalamus might 
also be affected by DNA methylation [125]. Plagemann and 
colleagues reported that methylation in the promoter re-
gion of Insulin receptor (InsR) is higher in the hypothalamus 
of rats coming from small litters, suggesting that increased 
glucose levels due to overfeeding in neonates might be the 
cause [126]. Alterations in the methylation of Npy promot-

FIGURE 2: Metabolites 
influence chromatin archi-
tecture. Glucose and fatty 
acid catabolism produce 
acetyl-CoA through meta-
bolic pathways including 
tricarboxylic acid cycle 
(TCA) and β-oxidation. 
Acetyl-CoA regulates his-
tone acetylation because it 
is important for the enzy-
matic activity of histone 
acetyltransferases.  NAD+ is 
produced by oxidative 
pathways and is a relevant 
cofactor for histone 
deacetylation mediated by 
sirtuins. The methionine 
cycle is the principal pro-
ducer of S-adenosyl methi-
onine (SAM), which is a 
cofactor for histone/DNA 
methyltransferase (HMT or 
DNMT). Histone deacety-
lase (HDAC), ten-eleven 
translocation (TET), histone 
demethylase (HDM). 
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er were also observed in the PVN of mice fed on a cafeteria 
diet [127]. Moreover, genetic studies have shown that de-
letion of the DNA methyltransferase Dnmt3a in PVN Sim1-
neurons leads to obesity [128].  

Methylated DNA recruits various proteins with a me-
thyl-CpG-binding domain (MBD), such as methyl-CpG-
binding protein 2 (MeCP2). A genetic study revealed an 
important role for MeCP2 in the regulation of energy me-
tabolism, as mice lacking Mecp2 in Sim1 neurons devel-
oped an obese phenotype [129]. Similarly, Mecp2 deletion 
in POMC neurons results in increased body weight, fat 
mass, leptin resistance and food intake [130]. Altogether, 
these studies have highlighted the crucial role of DNA 
methylation in the hypothalamic regulation of energy me-
tabolism. 
 
Hypothalamic histone PTMs and energy balance control  
The activity of most chromatin modifiers is influenced by 
metabolites. Glucose and fatty acid catabolism produce 
acetyl-CoA, which is an essential acetyl group donor in his-
tone acetylation reactions. Thus, acetyl-CoA links energy 
metabolism with epigenetic gene regulation [131]. In addi-
tion, NAD+ is a common molecule in various oxidative 
pathways and it is also an obligate cofactor for sirtuin-
dependent histone deacetylation (Figure 2) [132]. Hence, 
fluctuating NAD+ levels could contribute to histone 
deacetylation by sirtuin. Nonetheless, the connection be-
tween histone PTMs in the hypothalamus and obesity pre-
disposition has not been sufficiently explored and remains 
largely unknown. 

Some of the few available studies have focus on the 
function of histone acetylation in hypothalamic neurons. 
The first evidence emerged from studies on the (NAD+)-
dependent class III deacetylase sirtuin 1 (SIRT1). This par-
ticular enzyme regulates gene expression by deacetylation 
of proteins including transcription factors and histones. 
Importantly, SIRT1 levels are high in the hypothalamus 
including the ARC and VMH [132]. SIRT1 in the hypothala-
mus is believed to act as a nutrient sensor, as lack of Sirt1 
in SF1 or POMC neurons causes hypersensitivity to high-fat 

diet and decreased energy expenditure [133, 134]. On the 
contrary, in orexigenic AgRP neurons SIRT1 deficiency sup-
presses food intake on a standard diet [135, 136]. Interest-
ingly, Sirt1 expression was also shown to be affected by 
aging in the ARC [137], and it has been suggested that con-
ditional knock-in of Sirt1 in AgRP and POMC neurons could 
protect against aging-associated obesity by inhibiting feed-
ing and stimulating energy expenditure [138]. Nevertheless, 
the data accumulated so far on the role of SIRT1 in the 
hypothalamus do not distinguish if its action is mediated 
through chromatin remodeling or other processes.  

Diet insults seem to modulate the hypothalamic ex-
pression of several HDACs, such as Hdac3, Hdac4 and 
Hdac5 [139]. Indeed, HDAC5 is necessary for correct leptin 
signaling in hypothalamic neurons. Specifically, HDAC5 
regulates the localization of STAT3, a crucial transcription 
factor that mediates leptin signaling in neurons [140].  
 
Hypothalamic ncRNAs and energy balance control 
Many recent studies have suggested that miRNAs might be 
important regulators of energy balance by modulating the 
melanocortin system. The first evidence that miRNAs are 
involved in the hypothalamic control of energy balance 
came from the observation that expression of Dicer, a key 
gene for miRNAs maturation, is modulated by nutritional 
status in the hypothalamus [141]. Interestingly, most 
POMC and AgRP neurons express Dicer. Deletion of Dicer in 
POMC neurons causes post-natal neurodegeneration re-
sulting in increased appetite, obesity and T2D (Figure 3) 
[141–143]. In agreement with these observations, brain- 
and ARC-specific deletion of Dicer causes similar metabolic 
alterations [144, 145]. A recent study has shown that miR-
103/107 is potentially involved in the maturation of hypo-
thalamic Pomc progenitors [143]. These observations were 
in accordance with previous studies reporting the im-
portance of miRNAs in neuronal development [146]. In fact, 
many hypothalamic miRNAs are expressed during devel-
opment in mice and pig [147, 148]. In the last years, signifi-
cant effort has been made to identify hypothalamus-
specific miRNAs. So far, it has been shown that expression 

FIGURE 3: Hypothalamic miRNAs control energy balance. POMC and AgRP neurons from the arcuate nucleus (ARC) send projections to 
the paraventricular nucleus (PVN) to control energy balance. Dicer and several miRNAs, such as miR-103 and miR-200a, have been pro-
posed to control appetite and body weight likely via POMC neurons. Additionally, miRNA biogenesis is also important for the development 
of POMC neurons. Melanocortin receptor 4 (MC4R). 
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of let-7c, miR-7a, miR-7b, miR-124a, miR-125a, miR-136, 
miR-138, miR-212, miR-338, miR-451, mir-200a/b and mir-
429 is enriched in the hypothalamus [149–152]. Among 
them, miR-7a displays an interesting pattern of expression 
that seems to be specific for AgRP and POMC neurons, but 
its exact function remains elusive [149]. 

In the hypothalamus, the physiological role of lncRNAs 
remain elusive and only few studies have focused on them. 
Brain cytoplasmic RNA 1 (BC1) has been well characterized 
in neurosecretory axon terminals from the hypothalamus 
and it regulates protein translation by its binding to the 
ribosome [153]. Many other lncRNAs have been found to 
be expressed exclusively in the hypothalamus, yet their 
function remains completely unknown [154, 155]. One 
recent study has investigated the relationship between 
energy availability and lncRNAs in the hypothalamus, re-
vealing that the pattern of expression of many lncRNA is 
regulated by fasting [156]. Recently, a study in rodents has 
highlighted the importance of the Snord116 genomic clus-
ter, a locus encoding multiple ncRNAs, in the hyperphagia 
observed in Prader-Willi syndrome [157] These data have 
provided notable information, yet one of the biggest chal-
lenges in the field will be to elucidate their precise func-
tions in energy balance control.  

 
CONCLUSIONS AND FUTURE DIRECTIONS 
Obesity is the result of disrupted energy balance, which is 
partially the consequence of alterations in the hypothalam-
ic melanocortin circuitry. Indeed, various obesity suscepti-
bility genes have been identified and some of them belong 
to the central melanocortin system. Therefore, a better 
understanding of the precise mechanisms implicated in the 
melanocortin control of energy balance is a fundamental 
requisite for the development of more effective anti-
obesity therapeutic strategies. Importantly, genetics alone 
cannot explain the current obesity epidemics. Overfeeding 
and the prevailing obesogenic environment can impair the 
sophisticated hypothalamic circuits that regulate energy 
homeostasis, and current evidence underscores the im-
portance of epigenetic gene regulation in this process. In-
deed, metabolites derived from the diet are necessary for 
the function of many chromatin modifying enzymes. The 
reversible nature of most epigenetic modifications makes 
them very attractive targets for possible anti-obesity inter-
vention and prevention strategies.  

The hypothalamus is a complex neuronal network with 
a remarkable variety of cell populations. It is therefore very 
likely that AgRP and POMC neurons might have exclusive 
epigenomes. To date, analysis of epigenetic signatures has 
been performed in specific gene promoters and whole 
hypothalamic samples. This represents a major limitation, 
as it might mask the diversity of cell-specific epigenetic 
marks. New methodologies such as single-cell technology 
or laser dissection have been proposed to tackle this limi-
tation. However, the high cost or low yield of these ap-
proaches do not overcome this challenge. In moving for-
ward, more studies are necessary to elucidate the role of 
epigenetics upon appetite and energy balance control in a 
neuron-specific manner. These answers will be crucial, not 
only to improve our understanding of the gene-
environment interactions, but also for the development of 
potential epigenetic-based future therapies aimed at con-
trolling food intake and body weight. 
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