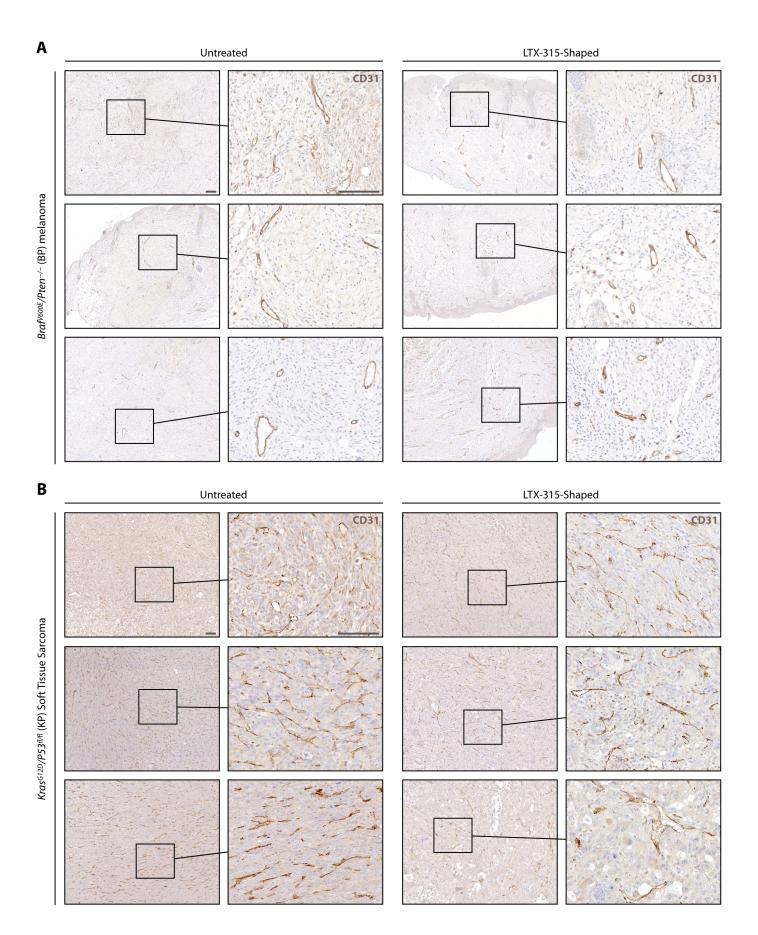
#### **Supplemental Information**

# LTX-315 sequentially promotes lymphocyte-independent and lymphocyte-dependent antitumor effects

Hsin-Wei Liao<sup>1\*</sup>, Christopher Garris<sup>1\*</sup>, Christina Pfirschke<sup>1</sup>, Steffen Rickelt<sup>2</sup>, Sean Arlauckas<sup>1</sup>, Marie Siwicki<sup>1</sup>, Rainer Kohler<sup>1</sup>, Ralph Weissleder<sup>1</sup>, Vibeke Sundvold-Gjerstad<sup>3</sup>, Baldur Sveinbjørnsson<sup>3,4</sup>, Øystein Rekdal<sup>3,4</sup>, Mikael J. Pittet<sup>1</sup>•

<sup>1</sup>Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, USA; <sup>2</sup>David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; <sup>3</sup>Lytix Biopharma, Oslo, Norway; <sup>4</sup>Department of Medical Biology, University of Tromsø, Tromsø, Norway. \*These authors contributed equally to this work; •Corresponding author


#### Content

Two Supplemental Figures: Fig S1, Fig S2

## Α

B16F10 Model

| B16F10<br>2x10⁵ i.d.<br>↓<br>-4                   | LTX-315 i.t.<br>(1 mg/50 µl<br>Saline)<br>↓ ↓ ↓<br>0 1 2 | Measure Tumor<br>Progression | ► Time (d) |
|---------------------------------------------------|----------------------------------------------------------|------------------------------|------------|
| В                                                 |                                                          |                              |            |
| Braf <sup>v600E</sup> /Pten <sup>-/-</sup> Model  |                                                          |                              |            |
| 4-Hydroxy-<br>tamoxifen i.d.<br>↓<br>~-28         | LTX-315 i.t.<br>(1 mg/50 µl<br>Saline)<br>↓ ↓ ↓<br>0 1 2 | Measure Tumor<br>Progression | ► Time (d) |
| C<br>Kras <sup>G12D</sup> /p53 <sup>fl/fl</sup> N |                                                          |                              |            |
| AdCre i.m.<br>↓                                   | LTX-315 i.t.<br>(1 mg/50 µl<br>Saline)<br>↓ ↓ ↓          | Measure Tumor<br>Progression | ► Time (d) |
| ~-50                                              | 0 1 2                                                    |                              |            |



# Figure S1. LTX-315 treatment strategy in syngeneic and conditional genetic mouse models.

- (A) Schematic of B16F10 melanoma experiments: C57BL/6 wild type mice or Rag2-/- mice bearing B16F10 melanoma tumor grafts were treated intratumorally (i.t.) with LTX-315 for three consecutive days. Tumor-bearing control mice were left untreated.
- (B) Schematic of BP melanoma experiments: *Braf<sup>V600E</sup>/Pten<sup>-/-</sup>* (BP) mice subjected to tamoxifen to produce tumors were treated intratumorally (i.t.) with LTX-315 for three consecutive days or left untreated.
- (C) Schematic of KP soft tissue sarcoma experiments: Kras<sup>G12D</sup>/p53<sup>#/#</sup> (KP) mice subjected to intramuscular leg injection with Adenovirus expressing Cre recombinase (AdCre) to produce tumors were treated intratumorally (i.t.) with LTX-315 for three consecutive days. Tumorbearing control mice were left untreated.

### Figure S2. CD31 staining in untreated and LTX-315-shaped BP and KP tumors.

- (A) CD31 staining of tumor sections obtained from *Braf<sup>V600E</sup>/Pten<sup>-/-</sup>* (BP) mice that were either left untreated ("Untreated") or that regrew after LTX-315 treatment ("LTX-315-Shaped"). Both mouse cohorts had similar tumor burden (see also Figure 3A). Scale bar: 100 μm.
- (B) CD31 staining of tumor sections obtained from *Kras<sup>G12D</sup>/p53<sup>#/#</sup>* (KP) mice that were either left untreated ("Untreated") or that regrew after LTX-315 treatment ("LTX-315-Shaped"). Both mouse cohorts had similar tumor burden (see also Figure 3A). Scale bar: 100 μm.