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Surgery is regarded by many as the go-to treatment 
option for severe obesity; yet how physically altering 
the gastrointestinal tract produces such striking results 
on body weight and overall metabolic health is poorly 
understood. In a recent issue of Cell Reports Ye et al. 
(2020) compare mouse models of Roux-en-Y gastric 
bypass (RYGB) and sleeve gastrectomy (SG), the two 
most commonly performed weight loss surgeries in the 
clinic today, to show that the former reconfiguring 
procedure selectively increases resting metabolic rate 
through splanchnic nerve-mediated browning of mes-
enteric white fat. More significantly, they demonstrate 
that this effect for RYGB is required for the maintained 
negative energy balance and improved glycemic con-
trol that it confers. 
 
As the global incidence of obesity continues to rise, so too 
does the number of weight loss surgeries being performed 
[1]. Nevertheless, demand for these surgeries still far 
outweighs their supply [1], and current noninvasive 
alternatives remain only a fraction as effective [2]. For 
these reasons, research into how RYGB and SG in particular 
confer their pronounced weight-lowering effects and 
metabolic benefits to patients with severe obesity has 
grown in prominence. This has led to the development and 
refinement of RYGB and SG mouse models by various 
independent laboratories [3]. Where these models have 
largely succeeded in reproducing the weight loss 
trajectories observed for RYGB and SG proper [3], they 
have fallen short in reproducing their lasting suppression of 

food intake [4]. They do, however, successfully reproduce 
(perhaps even too well) the post-RYGB and SG increases in 
resting metabolic rate reported in clinical studies [4]. 
Consequently, when functional brown fat was rediscovered 
in adult humans a little over ten years ago now [5-7] and 
white fat browning (also known as britening or beiging) 
gained mainstream attention by the metabolic community, 
it soon followed that surgical scientitsts would ask how 
these thermogenic and glucoregulatory tissues are affected 
by RYGB and SG [8]. The results would be decidedly mixed, 
with some evidence of enhanced brown fat thermogenesis, 
white fat browning, or neither, for both procedures [8]. 
These inconsistencies aside, the jury was still very much 
out concerning the causal role of thermogenesis in 
mediating the outcomes of RYGB and SG on body weight 
and glycemic control. 

Writing in Cell Reports, Ye et al. (2020) [9] directly 
compared resting metabolic rates in RYGB and SG mouse 
models. Where their approach differs from previous 
preclinical and clinical studies on the subject is how they 
opted to perform both direct and indirect calorimetry 
measurements [8]. From this, they could cleverly deduce 
that at a stage when both procedures induced similar 
weight loss, only RYGB-operated mice had higher total and 
anaerobic resting metabolic rates compared with sham-
operated mice. Guided by these findings, the authors 
proceeded to analyse various fat depots for molecular 
markers of thermogenesis such as the inner mitochondrial 
membrane proton symporter uncoupling protein 1 (UCP1). 
Surprisingly, they found that Ucp1 mRNA levels were lower 
in classical (interscapular) brown fat and subcutaneous 
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(inguinal) white fat of RYGB-operated compared with 
sham-operated mice. In contrast, Ucp1 mRNA levels were 
twice as high in visceral (mesenteric) white fat along with 
higher UCP1 protein levels. Again, analysis of this particular 
fat depot, which lines the outside of the gastrointestinal 
tract and as such is regarded as the true visceral fat depot, 
is what sets the study of Ye et al. [9] apart from the rest [8]. 
While almost entirely overlooked in the context of 
thermogenesis, mesenteric white fat has been shown to 
increase Ucp1 mRNA levels by approximately 4-fold in rats 
chronically exposed to cold [10]. In line with the 
mesenteric white fat browning of RYGB-operated mice, 
their uptake of a radioactive glucose analogue in the small 
intestinal region was 50% higher compared with body 
weight-matched sham-operated mice, although it should 
be noted that this does not necessarily reflect 
thermogenesis per se [11] or could simply be attributable 
to heightened metabolic activity of jejunal enterocytes [12]. 

Next, because the sympathetic nervous system (SNS) is 
a major driver of thermogenesis [13-15], Ye et al. (2020) [9] 
assessed molecular markers of sympathetic tone in jejunal 
and mesenteric white fat samples such as the rate-limiting 
enzyme in noradrenaline production tyrosine hydroxylase 
(TH). Curiously, this revealed higher TH protein levels in 
human and mouse jejunal mucosa after RYGB where 
sympathetic nerve terminals do not normally reach. There 
was also higher TH protein levels in mesenteric white fat of 
RYGB-operated compared with sham-operated mice, 
providing first evidence of enhanced sympathetic tone in 
this region. To more directly prove this, the authors 
performed intricate electrophysiological recordings of the 
greater splanchnic nerve, a mixed sympathetic nerve with 
cholinergic efferents that originate in the lateral horn of 
the thoracic spinal cord and whose axons pass straight 
through the sympathetic trunk to synapse at the celiac 
ganglion with noardrenergic efferents that innervate the 
small intestine. It was found that RYGB-operated mice had 
higher neuronal activity compared with sham-operated 
mice both before and during weight loss. Additionally, by 
transecting the greater splanchnic nerve distal to the 
recording electrode (just proximal to the celiac ganglion), 
the authors could silence afferent fibre activity and 
uncover higher efferent fibre activity for RYGB-operated 
mice. Notably, the electrical activity of sympathetic fibres 
innervating interscapular brown fat was similar between 
the two surgical groups, suggesting that reconfiguring the 
gastrointestinal tract causes region-specific changes in 
sympathetic tone.  

From these results, Ye et al. (2020) [9] were now ideally 
placed to ask whether intact sympathetic innervation of 
the small intestine is required for the weight-lowering 
effects and metabolic benefits of RYGB. To do so, they 
selectively transected the lesser splanchnic nerve and 
removed the celiac ganglia all the while carefully 
preserving sympathetic innervation of the kidney and 
adrenal glands. Remarkably, this resulted in weight regain 
in RYGB-operated mice and abolishment of their higher 
total and aerobic resting metabolic rates as well as 

mesenteric white fat browning. Further, the improved 
insulin sensitivity of RYGB-operated mice was lost although 
their improved glucose tolerance was largely preserved: 
unexpected as the avid glucose uptake of thermogenic 
adipocytes when sympathetic tone is high should also be 
lost upon sympathetic denervation [16] with 
corresponding effects on glycemic control.  

Finally, to identify a mechanism for increased 
splanchnic nerve activity after RYGB, Ye et al. (2020) [9] 
systematically considered various possibilities. Circulating 
gut hormones such as glucagon-like peptide 1 (GLP-1) and 
peptide tyrosine tyrosine (PYY) as well as bile acids were 
excluded since they were equally increased by RYGB and 
SG, although specific bile acid species could be 
differentially regulated by the two procedures. Indeed, the 
bile acid receptor Takeda G-protein coupled receptor 5 
(TGR5) has previously been shown to be required for 
weight loss, increased resting metabolic rate, and 
interscapular brown fat themogenesis for SG [17] but not 
for RYGB [18] in diet-induced obese mice. The authors then 
narrowed their search down to the endocannabinoid 
system because of its established role in regulating resting 
metabolic rate and energy balance. By measuring 
cannabinoid 1 (CB1) receptor protein levels in jejunal 
whole-wall lysates, they found what appeared to be a 
complete disappearance for RYGB-operated mice unlike for 
SG-operated mice. Further, the effects of RYGB on body 
weight and mesenteric white fat browning were partially 
reversed with the endogenous CB1 receptor agonist 
anandamide, although in principle this would have been 
occluded by the absence of jejunal CB1 receptors. 
Providing theraputic value to their findings, they could 
demonstrate that chronic oral administration of the 
synthetic CB1 receptor inverse agonist rimonabant to diet-
induced obese mice mimicked some of the key features of 
RYGB such as higher splanchnic nerve efferent activity, 
mesenteric white fat browning, and weight loss. This latter 
set of pharmacological experiments also provides 
important proof-of-principle that counteracting intestinal 
CB1 receptor signaling is sufficient to enhance local 
sympathetic tone.        

The findings of Ye et al. (2020) [9] offer an 
unprecedented level of mechanistic insight into how RYGB 
produces such striking results on body weight and overall 
metabolic health, but several key questions remain. For 
example, how rerouting ingested food pasage from the 
(smaller) stomach away from the duodenum and directly 
to the jejunum causes downregulation of jejunal CB1 
receptors after RYGB was not established, nor was it 
possible for the authors to measure jejunal 
endocannabinoid levels. Interestingly, RYGB has previously 
been shown to robustly decrease endocannabinoid levels 
(anandamide and 2-arachidonoylglycerol) in the liver and 
skeletal muscle of diet-induced obese rats independently 
of weight loss [19]. This suggests that RYGB decreases CB1 
receptor (and/or CB2 receptor) signaling in various periph-
eral tissues, which may confer distinct metabolic benefits. 
Additionally, the cell types that contribute to 
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downregulation of jejunal CB1 receptors after RYGB and 
the precise neural circuit that this would then recruit to 
increase splanchnic nerve outflow is unclear (Figure 1). 
Enteroendocrine cells in the upper small intestine and 
vagal afferent neurons express CB1 receptors [20, 21], but 
their selective deletion in both sensory cell types does not 
promote weight loss [22, 23] and RYGB retains its 
metabolic benefits in mice lacking GLP-1 and Y2 receptors 
[24] or an intact vagus nerve [25]. We are then left with 
intestinal immune cells residing in the lamina propria. 
Despite the lack of overt changes in the jejunal immune 
cell landscape of RYGB-operated mice reported by Ye et al. 
(2020) [9], the possibility still exists that CB1 receptors are 
downregulated in distinct innate and/or adaptive immune 
cell types [26], which in turn could regulate the excitability 
of splanchnic afferent neurons innervating the jejunal 
mucosa through an unknown secreted factor (Figure 1). 
Indeed, Ye et al. [9] found that denervation of the greater 
splanchnic nerve in itself led to weight loss in diet-induced 
obese mice due to reduced food intake, attesting that gut-
derived signals are relayed via splanchnic afferent neurons 
to the central nervous system to regulate energy balance. 
Another question that remains is to what extent the well 
established shifts in the intestinal microbiota following 
RYGB contribute to mesenteric white fat browing. Ye et al. 
(2020) [9] found a splanchnic nerve-mediated decrease in 
cecal Bacteroidetes in RYGB-operated mice, which is in line 

with how this bacterial phyla negatively associate with 
thermogenic markers in subcutaneous white fat of obese 
patients [27]. It is also possible that splanchnic efferents 
regulate microbiota residing in mesenteric white fat itself 
[28] following RYGB, to influence various cellular processes 
including thermogenesis. Lastly, since RYGB increases 
anaerobic resting metabolic rate, a non-UCP1-dependent 
form of thermogenesis in mesenteric adipocytes may 
become operational, as UCP1 activation results in oxygen 
consumption [29]. This could potentially be fulfilled by 
anaerobic glycosis, which occurs when glucose metabolism 
predominates in cells and glycolytic rates are high, and can 
have a sizeable impact on organismal thermogenesis [30]. 
Going forward, the groundbreaking study of Ye et al. 
(2020) [9] confirms how garnering better insight into the 
mechanistic underpinnings of weight loss surgeries can 
delineate new pathways that regulate energy balance to 
potentially guide the development of alternative, non-
invasive treatments for obesity and its comorbidities. 
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FIGURE 1: A proposed pathway for how RYGB increases resting metabolic rate. 1 The rerouting of ingested food caused by RYGB may 2 
downregulate jejunal CB1 receptors in L-cells, peripheral vagal afferent endings, and/or immune cells. This would then result in 3 the in-
creased excitability of vagal afferent and splanchnic afferent nerve fibers which propagate their signals to 4 the central nervous system 
where they are processed. Splanchnic efferent neurons are in turn 5 stimulated to 6 region-specifically increase sympathetic tone and 7 
induce browning of mesenteric white fat. The ultimate outcome is an increase in resting metabolic rate which drives weight loss mainte-
nance and improvements in glycemic control. 
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