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ABSTRACT  Phosphatidyl inositol 3 kinase gamma (PI3Kγ) is 
expressed in all the cell types that are involved in airway 
inflammation and disease, including not only leukocytes, but 
also structural cells, where it is expressed at very low levels 
under physiological conditions, while is significantly upregu-
lated after stress. In the airways, PI3Kγ behaves as a trigger 
or a controller, depending on the pathological context. In 
this review, the contribution of PI3Kγ in a plethora of respir-
atory diseases, spanning from acute lung injury, pulmonary 
fibrosis, asthma, cystic fibrosis and response to both bacteri-
al and viral pathogens, will be commented. 
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INTRODUCTION 

Phosphatidyl inositol 3 kinases (PI3Ks) are a family of lipid 
kinases that play key roles in a plethora of processes, in-
cluding cell growth, proliferation and differentiation, tissue 
morphogenesis, metabolism, and immune function. The 
PI3K family is divided into three classes with distinct func-
tions, among which the best characterized is class I, which 
phosphorylates phosphatidylinositol 4,5 bisphosphate in 
the third position to generate the second messenger phos-
phatidylinositide 3,4,5 trisphosphate. Class I PI3K subfamily 
is further divided into two classes: class IA, which is com-
posed of α, β and δ isoforms, and class IB, whose only 
member is PI3Kγ [1]. Class I PI3K isoforms display different 
expression patterns: while PI3Kα and PI3Kβ are ubiquitous-
ly expressed, PI3Kδ and PI3Kγ have a more restricted ex-
pression pattern. Accordingly, deficiency in PI3Kα or PI3Kβ 

is embryonic lethal in murine models, whereas PI3Kγ or 
PI3Kδ knockout (KO) mice are viable and fertile [2]. 

In particular, PI3Kγ is expressed, at very low levels un-
der physiological conditions, in cell types including cardio-
myocytes [3-9], vascular smooth muscle cells [10], and the 
microglia [11], where it is significantly upregulated after 
stress.  

On the contrary, PI3Kγ is constitutively enriched in leu-
kocytes (neutrophils, eosinophils, macrophages, T cells and 
mast cells) [12]. Consistently, PI3Kγ KO mice exposed to 
natural pathogens/microbiota display altered immune 
traits that closely mirror the human Inactivated PI3Kγ Syn-
drome (IPGS) [13]. Intriguingly, clinical signs related to loss 
of PIK3γ include autoimmune cytopenia and infections, as 
well as pathological infiltration of T cells in barrier organs, 
including the lungs, that are hyper-responsive to microbial 
products [13]. 
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Abbreviatons: 
AHR – airway hyperresponsiveness; ASM – airway smooth 
muscle; cAMP – cyclic adenosine monophosphate; CF – 
cystic fibrosis; CFTR – CF transmembrane conductance 
regulator; GPCR – G-protein coupled receptor; COPD – 
chronic obstructive pulmonary disease; IAV – influenza A; 
IFN – interferon; IL – interleukin; IPF – idiopathic 
pulmonary fibrosis; KD – knockdown; KO – knockout; LPS – 
lipopolysaccharide; MIF – migration inhibitory factor; NK – 
natural killer; PI3K – phosphatidyl inositol 3 kinase; PLY – 
pneumolysin; SNP - single-nucleotide polymorphisms; TLR 
– Toll-like receptor; VILI – ventilation-induced lung injury. 
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Of utmost relevance for respiratory homeostasis and 
disease, PI3Kγ is also expressed in all the other cell types 
that are involved in airway disease, like endothelial cells 
[14], fibroblasts [15], and epithelial cells [16, 17].  

Besides such diverse expression patterns, class I PI3Ks 
own non-redundant roles in the response to a variety of 
stimuli. Class IA PI3Ks, exception done for PI3Kβ that can 
be also activated by G-protein Coupled Receptors (GPCRs) 
[18], are recruited to receptor tyrosine kinases through the 
SH2 domains of p85-like regulatory subunits. Class IB PI3Kγ 
is composed of the p110γ catalytic subunit, and of the 
p101 and p84/p87 subunits. These two adapter compan-
ions have important non-redundant roles in coupling PI3Kγ 
to upstream Ras/GPCRs signaling pathways [19]. While p84 
is a component of a constitutively- expressed PI3K complex, 
p101 is part of an inducible PI3K complex [20]. Moreover, 
the p110γ/p84 heterodimer is less sensitive to the activa-
tion promoted by Gβγ subunits and depends on Ras part-
nership, while activation of the p110γ/p101 variant by Gβγ 
subunits is more favorable and Ras-independent [21]. Im-
portantly, p110γ acts as an A-kinase anchoring protein 
(AKAP), being engaged in a functional and physical interac-
tion with PKA that does not involve its kinase activity [7, 8]. 
Thus, PI3Kγ is not only a kinase but also a scaffold protein 
for PKA in a complex containing type 3 and 4 phos-
phodiesterases (PDEs). This complex acts in a negative 
feedback loop, suppressing cyclic adenosine monophos-
phate (cAMP) levels in the vicinity of the β2-adrenergic 

receptor, through PKA-mediated activation of PDEs [7, 8]. 
Therefore, acting at the crossroads of multiple path-

ways [1, 22], PI3Kγ is a hub of intracellular signaling. As an 
example, PI3Kγ is activated downstream of GPCRs by both 
metabolic signals acting on β-adrenergic receptors, and 
immune signals like chemokines and complement frag-
ments. Moreover, PI3Kγ can be activated by pathogen- and 
damage-associated molecular patterns downstream of 
Toll-like receptors (TLRs) in myeloid cells [23-25] and cardi-
omyocytes [5], functioning as a master regulator at the 
interface between metabolic and immune homeostasis. 
The relevance of the PI3Kγ hub as a regulator and amplifier 
for diverse and converging signaling pathways is evident in 
mast cells, where the FcɛRI receptor mediates PI3Kγ activa-
tion. Yet, the FcɛRI receptor has no direct link to GPCRs, 
but degranulation relies on PI3Kγ [26]. Intriguingly, the 
combinatorial regulation of PI3Kγ heterodimer variants can 
lead to a remarkable level of signaling specificity, which 
depends on both the tissue and the physio-pathological 
context [27]. 

Moreover, studies demonstrating the effects of knock-
ing out PI3Kγ in murine disease models (Table 1) led to 
great interest in the immunological functions and in the 
potential of PI3Kγ as a therapeutic target in inflammatory-
driven diseases [15], including those affecting the airways. 
Within this review, we intend to highlight the relevance of 
PI3Kγ as a trigger or target in a plethora of respiratory dis-
eases, spanning from acute lung injury, pulmonary fibrosis, 

TABLE 1. Differential responses of PI3Kγ KO mouse models of respiratory diseases. 

Pathology  PI3Kγ KO phenotype References 

Airway inflammation 

Within all studies, PI3Kγ-deficient mice are healthy and viable with reduced allergic 
AHR, inflammation, and remodelling. In the absence of PI3Kγ, the chemokine-induced 
model of airway inflammation displays impaired neutrophils, eosinophils and macro-
phages chemotaxis, reduced peribronchial fibrosis and TGF-β1+ cells and lower Smad 
2/3 signaling. 

[57, 91, 116] 

Lung injury, 
Fibrosis 

PI3Kγ deficiency confers protection against bleomycin-induced pulmonary injury. PI3Kγ 
KO mice display reduced weight loss, decreased lethality, reduced deposition of lung 
collagen and lower expression of profibrogenic and proangiogenic genes. 

[51] 

Lung injury, 
Inflammation 
 

PI3Kγ KO mice display reduced accumulation of neutrophils in an LPS-induced acute 
lung injury model, and perturbation in E-selectin-mediated adhesion, in response to 
TNF-α. 

[117] 

Lung injury, 
Endotoxemia 
 

Endotoxemia-induced lung edema, neutrophil accumulation, nuclear translocation of 
NF-κB and production of proinflammatory cytokines (IL-1β and TNF-α) in lung neutro-
phils are reduced in transgenic mice lacking the catalytic subunit of PI3Kγ. 

[118] 

Lung injury, 
ARDS 

In acute lung injury and adult respiratory distress syndrome (ARDS) models, PI3Kγ KO 
mice display reduced histological evidence of lung injury after high volume ventilation 
and reduced PKB phosphorylation compared to wild-type, independently from inhibi-
tory effects on cytokine release. 

[16, 119] 

Lung vascular injury, 
Inflammation 

 

In a model where lung vascular injury was induced by bacteraemia (i.e. by intraperito-
neal Escherichia coli injection), PI3Kγ KO mice present higher levels of leucocyte accu-
mulation in the lung, and greater microvascular permeability, resulting in lung edema. 
These results point to PI3Kγ as a negative regulator of lung vascular injury in gram-
negative sepsis. 

[120] 
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asthma, cystic fibrosis and response to both bacterial and 
viral pathogens (Figure 1). 

 
PI3Kγ ROLE IN RESPIRATORY DISEASES 
Ventilator-induced damage 
Mechanical ventilation is a life-saving therapy but can con-
tribute to the progression or even initiate lung injury per se. 
Ventilation-induced lung injury (VILI) clinically displays 
signs of alveolar edema, including increased vascular per-
meability and accumulation of fluids in the alveoli [28]. 

In VILI, the mechanical stress induced by ventilation ac-
tivates the inflammasome in macrophages and endothelial 
cells, leading to enhanced nitric oxide (NO), oxygen radicals, 
and peroxynitrite production, which contributes to the 

increase of alveolar and vascular permeability [28] and 
impairs alveolar fluid clearance [29]. In line with these find-
ings, the inhibition of PI3Kγ kinase activity specifically in 
resident lung cells attenuates VILI through the reduction of 
NO release [30]. 

Besides NO, the intracellular level of cAMP is critical for 
the modulation of endothelial permeability [31]. Since 
PI3Kγ can act as a scaffold, independently of its kinase ac-
tivity, to modulate cAMP levels [7, 8], its role in the for-
mation of edema during VILI has been investigated. Ac-
cordingly, PI3Kγ knockout lungs are protected from VILI 
[16]. Moreover, pharmacological combined regimens 
aimed at blocking PI3Kγ kinase activity while increasing 
cAMP levels attenuate VILI in PI3Kγ wild-type lungs de-

FIGURE 1: Schematic representation of the biological processes induced or mediated by PI3Kγ in the cell types that are relevant for respira-
tory disease. PI3Kγ has been involved in almost all target cells shown in the figure using either isoform-selective PI3K inhibitors or genetic 
engineering. *Neutrophilic recruitment may be enhanced by either activation or inhibition of PI3Kγ, depending on the context. NO: Nitric 
Oxide; αSMA: α-smooth muscle actin; VEGF: Vascular endothelial growth factor; IL-13: Interleukin-13. 
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prived of circulating leukocytes [30], pointing to the central 
role of PI3Kγ in lung cell types other than the immune cells. 

Nevertheless, PI3Kγ is largely expressed in leukocytes, 
whose contribution to Vascular endothelial growth factor 
(VEGF) production, inflammation and injury in VILI is rec-
ognized [32]. A major player in the control of local and 
systemic immune response is TLR4 [33, 34]. Notably, it has 
been shown that TLR4 is overexpressed [35], and has a key 
role in experimental models of VILI [36-39]. In macrophag-
es, upon TLR4 receptor activation, PI3Kγ is recruited by 
Rab8, and is required to activate the Akt/mTOR pathway to 
bias the cytokine response towards an anti-inflammatory 
scenario [24]. Therefore, these findings suggest that the 
contribution of the TLR4/PI3Kγ axis to VILI pathogenesis 
deserves further investigation. 

PI3Kγ emerged therefore as a possible therapeutic tar-
get in the treatment and/or prevention of VILI and edema. 
However, strategies aimed at blocking PI3Kγ kinase de-
pendent and independent activities only in resident in-
flammatory and parenchymal lung cells, such as airway 
epithelial cells, should be addressed. This could enable to 
mitigate potential systemic side effects on the innate im-
mune system on one side, and on different cAMP-
responsive cells, like cardiomyocytes, on the other.  

 
Idiopathic pulmonary fibrosis (IPF) 
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, 
fibrotic interstitial lung disease of unknown etiology, which 
occurs primarily in older adults (median age at diagnosis is 
about 65 years) [40]. Although it is classified as a rare dis-
ease (occurring in less than 5/10,000 persons per year), IPF 
is the most common type of idiopathic interstitial pneu-
monia, occurring with a frequency comparable to that of 
stomach, brain and testis cancers [41]. Moreover, the 
global burden of IPF is extremely high, due to the poor 
prognosis, with a median survival time of two to four years 
from diagnosis [42]. 

Historically, IPF was considered a chronic and progres-
sive inflammatory disorder, which gradually leads to estab-
lished fibrosis. However, the failure of anti-inflammatory 
therapies [43] caused a profound revision of this concept 
[44]. IPF is now thought to result from the concomitance of 
repetitive local micro-injuries to the ageing alveolar epithe-
lium, genetic factors [45], and environmental risk factors 
(such as cigarette smoke, drugs, lung microbiome, infec-
tions or environmental pollutants) [42, 46]. In turn, intra-
cellular signaling initiated by micro-injuries gives rise to an 
aberrant communication between epithelial cells and fi-
broblasts, leading to increased extracellular matrix accu-
mulation, and, ultimately, to lung interstitial remodeling 
and loss of function. 

Within this context, PI3K signaling emerged as a crucial 
pathway in models of pulmonary fibrosis [47, 48]. In par-
ticular, class I PI3Ks play key roles in the homeostasis of all 
the cell types that are involved in the pathogenesis of IPF. 
Consistently, an inhaled pan-Class I PI3K inhibitor has been 
demonstrated to have a protective effect against the rapid, 
progressive pulmonary fibrosis induced by instillation of 
bleomycin in vivo [48], by reducing the expression of pro-

fibrotic genes, including transforming growth factor-β 
(TGF-β) and connective tissue growth factor (CTGF) [49]. 
Among class I isoforms, PI3Kγ is overexpressed in myofi-
broblasts and bronchiolar basal cells in the lungs of IPF 
patients, and, ex vivo, in human IPF primary fibroblasts [50]. 
Both genetic and pharmacological inhibition of PI3Kγ are 
able to inhibit proliferation as well as α-smooth muscle 
actin (αSMA) expression in IPF fibroblasts in vitro [50]. Ac-
cordingly, mice lacking PI3Kγ are protected from the accu-
mulation of matrix and leukocytes in the lungs after bleo-
mycin injury [51], pointing to PI3Kγ as a promising thera-
peutic target for IPF. 

Recently, the need of pathway-specific biomarkers and 
genetic phenotyping has emerged in order to identify pa-
tient subtypes for new combinatorial trials [52]. In fact, 
due to its intrinsic complexity, the natural history of IPF is 
highly variable and the course of the disease in an individ-
ual patient is somewhat unpredictable, as some patients 
experience a rapid lung decline, while others progress 
much more slowly. Of note, a rapidly progressive disease 
has been associated with the upregulation of several genes, 
including TLR9 [53], downstream of which PI3Kγ is activat-
ed, at least in cardiomyocytes [5]. Moreover, in the past 
two decades, metabolic dysregulation, impaired mito-
chondrial autophagy, and mitochondrial dysfunction have 
been observed in cells of IPF lungs [54]. 

Overall, these results suggest the intriguing hypothesis 
that the activation level of PI3Kγ might act as a master 
controller in the different processes that converge on IPF 
pathogenesis and influence the fate of the lung environ-
ment. Whether PI3Kγ will be a suitable biomarker or ther-
apeutic target in IPF patients, however, still has to be in-
vestigated. 

 
Asthma 
The role of PI3K family members in asthma is well docu-
mented and pan-class I PI3K topical inhibition is effective 
against acute and, more importantly, glucocorticoid re-
sistant asthma [49]. Focusing on the specific contribution 
of PI3Kγ to asthma pathogenesis, KO of PI3Kγ or treatment 
with an aerosolized dual inhibitor of PI3Kγ and δ (TG100-
115), is able to reduce eosinophilic airway hyper-
responsiveness (AHR) and inflammation in experimental 
models [54-57].  

Moreover, the PI3Kγ-specific inhibitor AS605240 
dampens eosinophilic inflammation induced by the CC 
chemokine eotaxin (CCL11), by suppressing signaling path-
ways downstream of CC chemokine receptor 3 (CCR3) [58]. 
In detail, AS605240 inhibits eotaxin-induced chemotaxis, 
adhesion to Intercellular Adhesion Molecule 1 (ICAM-1), 
and degranulation of human peripheral blood eosinophils 
by inhibiting ERK1/2 phosphorylation, without down-
regulation of surface CCR3 expression [58]. 

Mechanistically, the pathological role of PI3Kγ in asth-
ma implicates the release of inflammatory cell mediators, 
including macrophage migration inhibitory factor (MIF) and 
the T-helper type II cytokine Interleukin-13 (IL-13). 

MIF participates as a proinflammatory cytokine in both 
innate and adaptive immune responses, contributing to the 
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pathogenesis of inflammatory, metabolic, autoimmune, 
and allergic diseases. Of note, MIF plays a pivotal role in 
activating the expression of PI3Kγ regulatory (p101) and 
catalytic subunits (p110) [59]. In turn, increased PI3Kγ ac-
tivity is responsible for IL-13-mediated contraction of air-
way smooth muscle (ASM) cells, the underlying mechanism 
of AHR induced by allergen sensitization or cytokines in 
asthma [59-63]. IL-13 receptor and PI3Kγ are both ex-
pressed in ASM cells, in which they control contractility by 
regulating Ca2+ oscillations [64]. Notably, IL-13, which is 
increased in the airways of asthmatic patients and corre-
lates with AHR [65], is sufficient [66] and required [67] for 
the development of allergen-induced AHR. In a translation-
al perspective, targeting PI3Kγ, either pharmacologically or 
by RNA interference, suppresses IL-13-dependent contrac-
tility of ASM cells, and, more importantly, intranasal ad-
ministration of a PI3Kγ inhibitor attenuates IL-13-induced 
AHR in mice [64]. Therefore, dampening IL-13 levels by 
targeting the upstream PI3Kγ signaling might be a feasible 
and efficient strategy to reduce Ca2+ oscillations and con-
traction in ASMs.  

Overall, these data underline the promising therapeutic 
potential of PI3Kγ inhibition in asthma [68]. 

 
Cystic Fibrosis 
Cystic fibrosis (CF) is the most common genetic disease in 
the Caucasian population, affecting ~1 in 3,500 persons. 
The basic defect of CF results from mutations in a single 
gene encoding for the CF transmembrane conductance 
regulator (CFTR), a 1,480 residues transmembrane glyco-
protein that regulates cAMP-mediated chloride (Cl-) con-
ductance at the apical surface of secretory epithelia. Im-
paired secretion of Cl- and bicarbonate triggers dehydra-
tion of the airway surface liquid, resulting in increased mu-
cus viscosity and impaired mucociliary clearance. The ac-
cumulated mucus ultimately favors colonization by patho-
gens and resistance to treatments [69]. In turn, airway 
mucus obstruction and recurrent/persistent bacterial in-
fections trigger a chronic neutrophilic inflammation, which 
are responsible for the release of neutrophilic elastases 
and for the ensuing, progressive lung damage and decline 
of function in CF patients [70]. 

In this context, the inflammatory response in CF lungs 
is non-resolving and self-perpetuating. In fact, the vicious 
cycle of neutrophilic burden and release of noxious media-
tors, further fuels inflammation and infection, and further 
contributes to disease progression towards irreversible 
lung damage. Notably, albeit chronic bacterial infections 
play a prominent role in the progression of CF lung disease, 
inflammation was observed in the lungs of asymptomatic 
CF infants without any apparent established bacterial in-
fection [71], suggesting that sterile inflammation can pre-
cede, and possibly promote, infection in early-stage CF 
lung disease, by favoring the expansion of more pathogenic 
strains among the lung microbiota. Consistently, recent 
studies suggest that, upon migration to CF airways, neu-
trophils undergo a phenotypic reprogramming, leading to 
dysregulated lifespan, metabolism and effector function, 
ultimately contributing, together with the epithelium and 

resident microbiota, to the evolution of a pathological mi-
croenvironment [72]. 

Therefore, anti-inflammatory therapy, eventually com-
bined with antibiotics, is crucial to prevent lung damage. 
However, currently used therapeutic strategies show lim-
ited clinical benefit. With the aim of filling this gap, the 
possibility to interfere with leukocyte trafficking into CF 
airways has been explored. PI3Kγ has a key role in this pro-
cess, triggering signaling pathways evoked by binding of 
chemotactic factors to GPCRs. Among these, IL-8 repre-
sents the principal neutrophil chemoattractant and its ele-
vated concentration characterizes CF lung inflammation. In 
the CF context, the biological efficacy of both genetic dele-
tion and pharmacological inhibition of PI3Kγ in reducing 
chronic neutrophilic inflammation in the lungs has been 
demonstrated in 𝛽-ENaC overexpressing CF-like mice [73].  

While most research on CF inflammation has focused 
on epithelial cells and neutrophils, macrophages play an 
important role in the initiation and resolution of pulmo-
nary inflammation. Functional abnormalities have been 
observed in CF macrophages from experimental models, 
including newborn CF pigs, and from CF patients, and 
found to display a constitutive proinflammatory status and 
hyper-responsiveness to microbial stimuli, supporting the 
presence of a primary defect in CF macrophages, which 
seems to be correlated to CFTR channel function [74, 75].  

Of note, mucus stasis per se might be responsible for 
the pro-inflammatory polarization of airway macrophages 
[76], albeit data from CF patients point to a CFTR-
dependent defect in the resolution phase of inflammation, 
due to the inability of CF macrophages to re-polarize to the 
M2 immunosuppressive phenotype [77]. Notably, blockade 
of PI3Kγ activity promotes M1 macrophage polarization in 
implanted tumors, and inflammation, albeit M2 polariza-
tion has been observed in obese mice lacking PI3Kγ [78], 
suggesting that the cellular context and activation level of 
PI3Kγ might be crucial to determine the fate of macro-
phages. 

Overall, these data would support the relevance of the 
immune response in CF disease, but whether abnormalities 
in immune cells, including changes to macrophage polari-
zation, could be corrected using CFTR-directed therapies 
remains an open question. Whereas blockade of PI3Kγ 
activity by small-molecule inhibitors may represent a valid 
approach to down-modulate neutrophil recruitment and 
burst in inflamed tissues, the resulting increased suscepti-
bility to infection might be a potential side effect. There-
fore, focused therapeutic windows should be defined for 
the use of these molecules in CF patients.  

 
PI3Kγ IN INFECTIVE DISEASES 
Bacterial infections 
Streptococcus pneumoniae is the most prevalent gram-
positive bacterium causing community-acquired pneumo-
nia, septic meningitis, and otitis media. The pathogenicity 
of S. pneumoniae is largely linked to its ability to produce a 
variety of virulence factors, among which the most rele-
vant is pneumococcal virulence factor pneumolysin (PLY). 
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In addition to its ability to form pores in cell membranes, 
PLY acts as a pathogen-associated molecular pattern by 
signaling via TLR4 to induce TLR4-dependent cytotoxicity in 
lung resident macrophages, thus further promoting the 
bacterial colonization of the lower respiratory tract [35, 79]. 
Of note, TLR4 activation acts through PI3Kγ to shift macro-
phages towards an anti-inflammatory scenario [24]. Mech-
anistically, PI3Kγ and Rab8a control cytokine production by 
signaling through mTOR [24], which acts as a hub down-
stream of TLR4 to bias cytokine responses, inhibiting NFκB-
dependent transcription of pro-inflammatory cytokines, 
like IL-6 and IL-12, while enhancing STAT3-mediated tran-
scription of the anti-inflammatory cytokine IL-10 [80]. Con-
sistently, either genetic deletion or pharmacologic inhibi-
tion of PI3Kγ in mice infected with S. pneumoniae causes 
an impaired recruitment of macrophages, associated with 
a reduced bacterial clearance from the lungs [81]. This, in 
turn, results in an impaired resolution/repair process and 
in progressive pneumococcal pneumonia [81]. Similar re-
sults have been observed after infection by Staphylococcus 
aureus, as a higher bacterial burden is present in PI3Kγ KO 
mice, due to the reduced recruitment of leukocytes. 

On the contrary, PI3Kγ deficiency improves the re-
sistance against Mycobacterium tuberculosis in the early 
phase of infection, by increasing T helper IL-17+ (Th17) 
cells number, production of IL-17, and expression of mole-
cules associated with Th17- cells differentiation and neu-
trophil recruitment [82]. These findings are in accord with 
previous data showing increased concentrations of IL-17 in 
the bronco alveolar lavage fluid of PI3Kγ KO mice chal-
lenged with intranasal instillation of lipopolysaccharide 
(LPS) [4].  

Moreover, a deficiency in expression of PI3Kγ, along 
with PI3Kδ, enhances the IL-17/G-CSF axis and induces 
neutrophilia [83]. 

Of note, the crosstalk between the IL-17 signaling 
pathway and neutrophils recruitment seems to be time-
dependent [84]: while higher neutrophil counts are protec-
tive against early tuberculosis infection [85], a pathogenic 
role of neutrophils during the late stages of tuberculosis 
has been proposed [86]. Thus, whereas pharmacological 
inhibition of PI3Kγ may be a suitable strategy to inhibit 
inflammation and limit lung damage in chronic and early-
stage lung diseases, it might raise concerns in acute and 
late-stage infections, where it could result in an impaired 
host defense against high bacterial burden.  

 
Influenza 
The role of PI3Kγ in the context of viral infections has been 
studied in Kaposi’s sarcoma-associated herpes virus-
induced tumors, where PI3Kγ is required for the viral onco-
genic signaling [87]. On the other hand, PI3Kγ is also im-
portant in the regulation of innate immune responses, as 
well as establishment and resolution of inflammation upon 
influenza infection. Influenza A (IAV) and B viruses are 
among the most common causes of acute respiratory dis-
eases of viral origin, accounting for three to five million 
cases of severe infection and up to 650,000 deaths/year 
worldwide [88]. In particular, the clinical manifestation of 

IAV infection, a highly pathogenic strain, is characterized by 
an excessive inflammatory response leading to lung dam-
age [89]. 

Response to IAV infection can be conceptually divided 
in three stages, which however occur simultaneously 
through the course of the injury [90]. First, the immune 
response against the influenza virus is initiated by release 
of type-I and type-III interferons (IFNs), mainly produced by 
epithelial cells, which are primarily targeted by IAV, and by 
dendritic cells. Second, the innate immune system (natural 
killer (NK) cells, macrophages, and neutrophils), is rapidly 
recruited to the airways by cytokines and chemokines. 
Finally, specificity and memory are provided by T cells. 
PI3Kγ plays a crucial role in all these responses, driving 
production of type-I and type-III IFNs, as well as recruit-
ment of NK and CD8+ T cells, and ultimately controlling 
viral titers in the infected lungs.  

PI3Kγ has a pivotal role in the recruitment and survival 
of macrophages and neutrophils [91, 92], which, however, 
when excessively activated, might be harmful to the host 
by leading to lung damage [93, 94]. Recently, PI3Kγ has 
been shown to be essential after IAV infection for the con-
trol of recruitment and survival of innate immune cells and 
for resolution of inflammation [95]. In fact, in PI3Kγ KO 
mice infected by IAV, the increased production of pro-
inflammatory cytokines and the accumulation of activated 
neutrophils in the lungs contribute to lung damage and 
enhanced lethality. Moreover, PI3Kγ controls leukocyte 
survival and resolution of inflammation, as shown by the 
reduced number of resolving macrophages and lower IL-10 
levels in PI3Kγ KO mice infected with IAV. Keeping with 
that, during IAV infection, this unbalance towards pro-
inflammatory signals, to the detriment of pro-resolving 
signals, finally results in increased lung injury in PI3Kγ KO 
mice. 

Recently, the contribution of PI3Kγ in regulating prim-
ing of CD8+ T cells by resident dendritic cells and 
NK/lymphocyte migration toward chemokine stimuli in 
PI3Kγ KD/KD (knockdown) [96] and PI3Kγ KO mice [45], 
respectively, has been shown to contribute to the en-
hanced susceptibility to IAV infection. 

Consistent with these findings, PI3Kγ orchestrates the 
antiviral immunity and inflammatory magnitude in re-
sponse to IAV by distinct mechanisms. Therefore, targeting 
PI3Kγ may not be useful to treat IAV infection, possibly 
leading to decreased control of the infection, but might be 
an important diagnostic marker of disease severity. Never-
theless, the contribution of the scaffold and kinase activity 
of PI3Kγ have not been dissected in this context, and atten-
tion should be paid to the fact that PI3Kγ KO and KD/KD 
mice do not necessarily have overlapping phenotypes, as 
previously suggested in the heart [8, 97]. 

Moreover, the analysis of single-nucleotide polymor-
phisms (SNPs) on PIK3CG gene might be exploited for 
prognosis. Different genetic polymorphisms on genes en-
coding for host factors have been investigated to explain 
the heterogeneity of immune responses to influenza infec-
tion and disease outcomes [98]. SNPs on PIK3CG, or close 
to the gene, have been studied in genetic association stud-
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ies in a number of diseases, like cardiovascular disease [99], 
epinephrine-induced aggregation [100] and HDL-
cholesterol plasma levels [101]. Importantly, SNPs located 
in PIK3CG gene (rs17847825 and rs2230460) have been 
associated with disease protection in influenza 
A(H1N1)pdm09-infected patients [95], thus suggesting the 
possible use of PI3Kγ as a clinical prognostic factor. 

 

CONCLUSIONS 
Following the initial characterization of PI3Kγ [102, 103] 
and the patenting of the first PI3Kγ-selective inhibitor by 
Novartis in 2003 for the treatment of respiratory diseases 
[104], drug discovery efforts in the last decade have vali-
dated the value of PI3Kγ as a promising therapeutic target, 
especially for inflammatory disease (for a chronological 
review of the patented synthetic PI3Kγ inhibitor chemo-
types see [15] and [105]). 

In particular, pharmacological targeting of PI3Kγ may 
be effective in the regulation of the immune system, and 
therefore in the control of airway diseases driven by an 
excessive inflammatory response. On the other hand, pos-
sible side effects can be expected upon long-term treat-
ment or in the co-occurrence of infections, as highlighted 
by preclinical work [81]. Similarly, infections have been 
observed as a significant side effect of the dual PI3Kγδ in-
hibitor Duvelisib [106]. However, whether and how PI3Kγ 
selective inhibitors predispose to infections is still unknown, 
as only one compound selectivity targeting PI3Kγ, IPI-549 
from Infinity Pharmaceuticals, has initiated clinical devel-
opment so far, though as an anti-cancer agent [105]. 
Therefore, it cannot be excluded that inhibitors targeting 
PI3Kγ catalytic activity may have opposite effects in the 
lungs, and only clinical trials will define the nature and the 
extent of a therapeutic window for these drugs in pulmo-
nary diseases, compared to the more advanced dual 
PI3Kγδ inhibitors. 

Among these, several compounds have reached clinical 
trial for respiratory diseases (Table 2). For example, 
Duvelisib was a candidate for mild asthma, but further 
development in non-oncologic diseases has been stopped, 

as the primary end point (changes in maximum allergen-
induced Forced Expiratory Volume 1 decrease) was missed 
in clinical trials. Significant effects were seen, however, on 
secondary end points, but at a dose potentially leading to 
serious adverse reactions [107]. Other dual γδ inhibitors 
that reached clinical development for respiratory diseases 
(like asthma and chronic obstructive pulmonary disease 
(COPD)) include RV1729 and RV6153, from RespiVert, and 
AZD8154, from AstraZeneca (Table 2). Possibly, an inhala-
tion-based delivery of PI3Kγδ (and PI3Kγ) inhibitors could 
help reducing, if not overcoming, any systemic adverse 
effect, though impairing the response to respiratory path-
ogens. In line with this approach, Chiesi Farmaceutici has 
started a clinical study to investigate the safety, tolerability 
and pharmacokinetics of the inhaled CHF6523 PI3K inhibi-
tor. As an exploratory assessment, the anti-inflammatory 
effect of CHF6523 on sputum and blood biomarkers in 
COPD subjects will be evaluated (Table 2). 

Moreover, considering that class IB isoforms can coop-
erate with class IA and IB PI3Ks in controlling, downstream 
signaling events, dual inhibition may be desirable to 
achieve a relevant therapeutic effect [15]. On the other 
hand, from a safety perspective, a high isoform selectivity 
is required, especially toward PI3Kα and β, which made 
development of PI3Kγ inhibitors difficult, due to the high 
similarity between isoform sequences. Only recently, new 
classes of increasingly more specific inhibitors have been 
generated to block PI3Kγ kinase activity [108-110]. Howev-
er, this approach may not discriminate between the two 
PI3Kγ heteromeric variants, that share the same catalytic 
p110γ subunit combined to different regulatory subunits, 
which hypothetically exert distinct biological functions [27].  

Nonetheless, PI3Kγ is a multifunctional protein, which 
is not only involved in the modulation of the Akt/mTOR 
pathway through its catalytic action, but also in the inhibi-
tion of cAMP as a scaffold protein. As cAMP elevation in 
lungs triggers bronchodilation and anti-inflammatory re-
sponses, better definition of the protein-protein interac-
tions driving PI3Kγ-mediated cAMP modulation might open 
the way to novel therapeutic options in airway diseases. 

TABLE 2. Clinical development of PI3Kγδ inhibitors for respiratory diseases.  

Com-
pound 

Developer Target Disease 
Clinical Trial 

Identifier 
Clinical 
phase 

Status 
Subjects 
enrolled 

Duration 
(weeks) 

Refs. 

IP-145 
(Copik-

tra®, 
Duvelisib) 

Verastem Oncolo-
gy, licensed from 
Infinity Pharma-
ceuticals 

PI3Kγδ 
inhibitor 

Mild 
Asthma 

NCT01653756 2 Completed 50 2 
[107, 
111, 
112] 

RV1729 RespiVert 
PI3Kγδ 

inhibitor 

Asthma 
Asthma 
COPD 

NCT01813084 
NCT02140320 
NCT02140346 

1 
1 
1 

Completed 
Completed 
Completed 

63 
49 
48 

4 
2 
4 

[111, 
113, 
114] 

RV6153 RespiVert 
PI3Kγδ 

inhibitor 
Asthma NCT02517359 1 Terminated 55 4 

[105, 
111] 

AZD8154 AstraZeneca 
PI3Kγδ 

inhibitor 

Asthma 
Asthma 
Asthma 

NCT04480879 
NCT04187508 
NCT03436316 

1 
2 
1 

Terminated 
Withdrawn 
Completed 

10 
- 

78 

9 
- 
2 

[115] 

CHF6523 Chiesi Farmaceutici 
PI3K  

inhibitor 
COPD NCT04032535 1 Recruiting - 4  
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Despite efforts in developing PI3Kγ inhibitors in the last 
decades, only one compound, the dual γδ inhibitor 
Duvelisib, has received approval, and its application is lim-
ited to oncological malignancies. Therefore, a more pro-
found understanding of the biological role of PI3Kγ variants 
as well as of the impact of its non-catalytic functions in 
signal transduction is needed in order to foster new tools, 
and expand fields of intervention for PI3Kγ targeting. 
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