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ABSTRACT  Pyroptosis is a proinflammatory form 
of programmed cell death in response to inflam-
mation. It involves in the pathogenesis and out-
comes of atherosclerosis characterized by NLRP3 
inflammasome assembly, membrane pore for-
mation, cell swelling, pro-inflammatory mediator 
and cytokine release. There are known pyroptosis 
molecular pathways including the caspase-1 de-
pended canonical signaling pathway and the 
caspase-4/5/11 determined non-canonical signal-
ing pathway. It is essential to explore the connec-
tion among NLRP3 inflammasome, pyroptosis and 
atherosclerosis, which may shed light on the po-
tential therapeutic strategies that target pyroptosis 
in atherosclerotic treatment. 

 
Pyroptosis in NLRP3 inflammasome-related atherosclerosis 

 
Xiang Zeng1,#,*, Dongling Liu2,3,#, Xia Huo4, Yue Wu1, Cuiqing Liu1, Qinghua Sun1 
1 School of Public Health, International Science and Technology Cooperation Base of Air Pollution and Health, Zhejiang Chinese Medi-
cal University, 548 Binwen Road, Hangzhou 310053, Zhejiang Province, China. 
2 School of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, Zhejiang Province, 
China. 
3 First Affiliated Hospital of Xinxiang Medical University, Weihui 453100, Henan Province, China. 
4 Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and 
Health, School of Environment, Jinan University, Guangzhou 511443, Guangdong Province, China. 
# These authors contributed equally to this work. 
* Corresponding Author:  
Xiang Zeng, Ph.D., Associate Professor, School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 
310053, Zhejiang Province, China; E-mail: zengxiang3044@163.com 
 
 

 
 
 

 
INTRODUCTION 
Cardiovascular diseases (CVDs) are the leading causes of 
mortality and morbidity globally, which was estimated that 
17.9 million individuals died due to CVDs in 2019, account-
ing for 32% of all global deaths [1]. Atherosclerosis is a 
cardiovascular progressive lesion occurred in coronary, 

cerebral, or peripheral vessels etc., resulting in serious 
health threat, heavy social and economic burdens [2][3][4]. 
It is characterized by the thickening of intima and the for-
mation of plaque at sites with endothelial cell injury and 
chaotic laminar flow, and has been regarded as a metabolic 
inflammatory disorder [5][6][7].  
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Abbreviatons: 
CVDs – cardiovascular diseases; NLR – nucleotide-binding 
oligomerization domain-like receptor; NLRP3 – nucleotide-binding 
oligomerization domain-like receptor family pyrin domain containing 3; 
ASC – apoptosis-associated speck-like protein containing a caspase 
recruitment domain; IL – interleukin; GSDMD – gasdermin D; PYD – N-
terminal effecto pyrin domain; NACHT – central nucleotide-binding and 
oligomerization; CARD – C-terminal caspase recruitment domain; ATP – 
adenosine triphosphate; ROS – reactive oxygen species; ER – 
endoplasmatic reticulum; NF-κB – nuclear factor κB; MAPK – 
mitogen-activated protein kinase; JNK – c-Jun N-terminal 
kinases; PAMPs – pathogen-associated molecular patterns; 
DAMPs – damage-associated molecular patterns; ECs – 
endothelial cells; VSMCs – vascular smooth muscle cells; LDLR – 
low-density lipoprotein receptor; ApoE – apolipoprotein E; CCs – 
Cholesterol crystals; Ox-LDL – oxidized low-density lipoprotein; 
LPS – lipopolysaccharide; FCs – foam cells; SMCs – smooth 
muscle cells; ICAM-1 – intercellular adhesion molecule-1; VCAM-
1 – vascular cell adhesion molecule-1; NSA – necrosulfonamide. 
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Nucleotide-binding oligomerization domain-like recep-
tor (NLR) family pyrin domain containing 3 (NLRP3) in-
flammasome is an intracellular molecular platform consist-
ing of NLRP3, ASC (apoptosis-associated speck-like protein 
containing a caspase recruitment domain) and pro-
caspase-1, and may be activated by a diverse range of 
stimuli such as pathogens, irritants, apoptotic and pyrop-
totic cells [8][9][10]. Additionally, NLRP3 inflammasome 
plays a crucial role in inflammatory response to defend 
external stimuli. Potassium (K+) efflux, calcium (Ca2+) waves, 
lysosome disruption, mitochondrial damage are the main 
activators for NLRP3 inflammasome activation in the body 
[11]. Activation of NLRP3 inflammasome has been docu-
mented in the pathogenesis of atherosclerosis, and elevat-
ed NLRP3 inflammasome levels were recorded in athero-
sclerotic patients [12][13][14][15]. However, little is known 
about the molecular mechanism underlying how NLRP3 
inflammasome impacts atherosclerosis. 

Recently, emerging studies report that pyroptosis is as-
sociated with both NLRP3 inflammasome and atheroscle-
rosis [7][16][17][18][19]. Some studies demonstrate that 
pyroptosis is a caspase-dependent pro-inflammatory form 
of programmed cell death, which is characterized by acti-
vation of NLRP3 pathways, pore formation of cell mem-
brane, and maturation and release of pro-inflammatory 
mediators such as interleukin (IL)-1β, IL-18, and pore-
forming protein gasdermin D (GSDMD) [20][21][22]. There-
fore, this study explores the mediator’s role of pyroptosis 
between NLRP3 inflammasome and atherosclerosis, which 
may shed light on the molecular mechanism and therapeu-
tic potential in the origination and progression of athero-
sclerosis. 
 
NLRP3 INFLAMMASOME 
Components and assembly of NLRP3 inflammasome 
NLRP3 inflammasome is one of the best known inflam-
masomes, which is consisted of NLRP3 sensor, ASC adaptor, 
and caspase-1 effector [10]. NLRP3 consists of three do-
mains: An N-terminal effector pyrin domain (PYD), a cen-
tral nucleotide-binding and oligomerization (NACHT) do-
main and a C-terminal leucine-rich repeats (LRRs) domain. 
ASC is made up of an N-terminal PYD and a C-terminal 
caspase recruitment domain (CARD). Pro-caspase-1 is 
composed of a CARD and caspase domains (Figure 1). Acti-
vated NLRP3 recruits ASC and pro-caspase-1 through a 
homotypic interaction of PYD-PYD and CARD-CARD, re-
spectively. 

 
Activation of NLRP3 inflammasome 
In general, the basal expression level of NLRP3 is not 
enough to activate NLRP3 inflammasome until adequate 
ASC and pro-caspase-1 are readily in the activated state. 
NLRP3 inflammasome starts the assembly process in re-
sponse to infection or sterile inflammation induced by a 
variety of stimuli such as bacteria, virus, adenosine tri-
phosphate (ATP), particulates, reactive oxygen species 
(ROS), crystals, and pore-forming toxins (Figure 2). Extra-
cellular ATP, particulate matter, crystals, and pore-forming 

toxins are common up-regulators of NLRP3 inflammasome 
activation [23]. Above events in relation to NLRP3 inflam-
masome activation have been documented, mainly includ-
ing potassium (K+) efflux, calcium (Ca2+) influx, lysosome 
destabilization and rupture, mtROS and mtDNA damage, 
and endoplasmic reticulum (ER) stress. Several intracellular 
pathways, i.e., nuclear factor κB (NF-κB), mitogen-activated 
protein kinase (MAPK), and c-Jun N-terminal kinases (JNK) 
signaling involved in the assembly process of NLRP3 in-
flammasome, were activated by pathogen-associated mo-
lecular patterns (PAMPs) and damage-associated molecu-
lar patterns (DAMPs). 
 
NLRP3 INFLAMMASOME IN ATHEROSCLEROSIS 
The main characteristics of atherosclerosis are lipid accu-
mulation, inflammatory cell infiltration, endothelial dys-
function, as well as proliferation of collagen and smooth 
muscle cells in endarterium [24]. Although dyslipidemia is 
the leading cause for atherosclerosis, inflammation is also 
a primary driver and modulator in the occurrence and pro-
gression of atherosclerosis. As the best well-known and 
dominant inflammasomes, NLRP3 inflammasome is in-
volved in the formation and development of inflammation 
and its related diseases [10]. Several studies have been 
sprung up in exploring NLRP3 inflammasome in relation to 
atherosclerosis [25][26][27][28][29][30][31]. However, the 
results of NLRP3 inflammasome on atherosclerosis are 
inconsistent and its molecular mechanism is still uncertain. 

IL-1β is one of the well-known inflammatory effector 
molecules during period of NLRP3 inflammasome activa-
tion, and also plays a pro-atherogenic role in the progres-
sion of atherosclerosis [32]. Therefore, IL-1β has been con-
sidered as a key mediator of NLRP3 inflammasome and 
atherosclerosis. It upregulates the secretion of adhesion 
molecules in both endothelial cells (ECs) and vascular 
smooth muscle cells (VSMCs), and accelerates the aggrega-
tion of monocytes or macrophages to vascular wall 
[33][34]. Furthermore, IL-1β could also promote ECs and 
VSMCs to assemble into the intima and trigger the release 
of inflammatory cytokines and chemokines to further ag-
gravate inflammation in macrophages [35]. In addition, L-
18 share similar function with IL-1β, which tends to be con-
sidered as a proatherogenic cytokine in atherosclerosis 
[36][37][38]. It is worth noting that IL-1β mediates the acti-
vation of NLRP3 inflammasome and the pathogenesis of 
atherosclerosis. 

Deficiency of NLRP3, ASC, and IL-1β in bone marrow 
significantly decreased atherosclerotic lesion formation 
[39][40][41]. In other words, the above-mentioned bioac-
tive compounds tremendously contribute to development 
of atherogenesis [35][42][43]. Utilization of gene silencing 
and specific inhibitors of NLRP3 also demonstrated that 
there was an atherogenic role of NLRP3 inflammasome 
[44][45]. Additionally, a reduction in atherosclerotic lesion 
was  found  in both low-density  lipoprotein  receptor 
(LDLR)–/– mice and apolipoprotein E (ApoE)−/− mice with 
deficiency in caspase-1/11 [46][47][48]. However, a few 
studies reported that there was no significant alteration in 
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plaque size or stability of atherosclerosis among ApoE−/− 

mice no matter whether deficiency of NLRP3, ASC, caspa-
se-1 or  not [49],  which is  inconsistent with  the  results  of 
the above-mentioned studies. Dissimilar research back-
ground and conditions such as sex, atherogenic diet, and 
hyperlipidemia level may contribute to these conflicting 
results. For example, insufficiency NLRP3 alleviated ather-
ogenesis in LDLR−/− female mice [40]. Notedly, NLRP3 in-
flammasome components have been upregulated in hu-
man atherosclerosis [14]. Moreover, NLRP3 protein level in 
peripheral leukocyte were linked with the severity of coro-
nary atherosclerotic patients with acute coronary syn-
drome [50]. Taken together, NLRP3 inflammasome plays a 
key role in the development of atherosclerosis. 

The underlying molecular mechanisms of NLRP3 in-
flammasome assemble in atherogenesis have been docu-
mented in recent years, such as K+ efflux (reduction of in-
tracellular K+), Ca2+ influx (increase in intracellular Ca2+), 
cathepsin leakage by lysosomal destabilization, ER stress, 
and mtROS/mtDNA (Figure 2) [51][52][53]. Cholesterol 

crystals (CCs) are one of the most potential stimu-
li/activators of NLRP3 inflammasome, which is present in 
atherosclerotic plaques of all stages. The formation of CCs 
was induced by incorporating oxidized low-density lipopro-
tein (Ox-LDL) and CD36 scavenger receptor in macrophages, 
which can activate NLRP3 inflammasome [13][39][54]. Sim-
ilar to other particle activators like particulate matter, 
pore-forming toxins, silica, and asbestos of NLRP3 inflam-
masome, CCs are mainly engulfed/phagocytosed by mac-
rophages and subsequently accumulated in lysosomes. 
Inadequate digestion of CCs in lysosome may induce lyso-
somal membrane damage and subsequent leakage of ca-
thepsins into cytoplasm, ultimately result in NLRP3 in-
flammasome activation [55][56][57]. Meanwhile, along 
with other particle substances, e.g., nigericin (a bacterial 
pore-forming toxin and K+ ionophore) and extracellular ATP 
(decrease of intracellular ATP), CCs activate NLRP3 inflam-
masome via K+ efflux pathway accompanied by purinergic 
P2X7 receptor (Figure 2) [58]. Additionally, NLRP3 inflam-
masome assemble can be triggered by calcium phosphate 

 
FIGURE 1.  Components and assembly of NLRP3 inflammasome. A two-step signal model is proposed for NLRP3 inflammasome. The prim-
ing signal (Signal 1, Step 1) induces transcriptional upregulation of pro-IL-1β, pro-IL-18, and NLRP3, which is mediated by PAMPs/DAMPs and 
induced by post-translational modifications (PTMs) such as de-ubiquitination and phosphorylation. The activation signal (Signal 2, Step 2) is 
triggered by promoting the oligomerization of inactive NLRP3, ASC, and pro-caspase-1 when the body confronts several intracellular events 
including K+ efflux, Ca2+ influx, mitochondrial dysfunction such as mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA 
(mtDNA), lysosomal destabilization, and endoplasmic reticulum stress. Active caspase-1 converts pro-IL-1β, pro-IL-18, gasdermin D (GSDMD) 
to active IL-1β, IL-18, and GSDMD-N terminus (GSDMD-N), respectively. 
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crystals, uric acid crystals, or fatty acid crystals 
[59][60][61][62]. Extracellular ATP derived from impaired 
or dead cells make up the necrotic core of atherosclerotic 
plaque, which triggers the NLRP3 inflammasome through 
P2X7/K+ efflux pathway. P2X7–/–/LDLR–/– mice or P2X7-
short interference (si) RNA in ApoE–/– mice demonstrated a 
decline in atherosclerotic lesions [63][64][65]. Hypoxia, a 
driving factor of atherosclerosis, arose in atherosclerotic 
plaques, which can induce and enlarge NLRP3 inflam-
masome activation in macrophage [66][67][68]. Moreover, 
mtROS/mtDNA can also trigger NLRP3 inflammasome in 
atherosclerosis [69][70][71]. For example, decreased 8-
oxoguanine glycosylase (a DNA glycosylase of eliminating 
oxidized DNA) in plaque macrophages led to elevated cyto-
solic oxidized mtDNA and subsequent NLRP3 inflam-
masome assembly [70]. Notably, NLRP3 inflammasome 
activation in atherogenesis occurs in a variety of cells such 
as macrophages, neutrophils, endothelial cells. Several 
other stimuli such as bacterial, viruses, particle matter, and 
ROS have been identified to be involved in the priming and 
triggering NLRP3 inflammasome in the process of athero-
sclerosis (Figure 2). 
 
PYROPTOSIS IN ATHEROSCLEROSIS 
Pyroptosis is a recently identified form of programmed cell 
death, which is characterized by membrane pore formation 
(bubbling), cell swelling, and cell lysis. Morphologically, it is 
most likely to be a combination of apoptosis and necrosis. 
Pyroptosis can be activated by various PAMPs and DAMPs 
stimuli such as intracellular lipopolysaccharides (LPS), ex-
tracellular ATP, cytosolic DNA, bacterial flagella, and parti-
cle matters, which is accompanied by inflammasome as-
sembly in terms of caspase-1 (canonical inflammasome 
pathway) or caspase-4/5/11 (noncanonical inflammasome 
pathway) that subsequently releases cell contents, secretes 
proinflammatory cytokines, and induces pyroptosis 
through the formation of membrane GSDMD pore (Figure 
3) [72][73][74]. GSDMD is a member of the gasdermin 
(GSDM) family consisting of a gasdermin-N domain and a 
unique binding inhibitory domain. Upon activation, it can 
induce perforation and pyroptosis in mammalian cells. As a 
substrate of caspase-1, caspase-4, and caspase-5, caspase-
11, GSDMD is also an important executor for pyroptosis 
mediating the pore-forming activity of membrane and the 
activation signaling of NLRP3 inflammasome 
[75][76][77][78][79]. There are several molecular pathways 
in pyroptosis, such as canonical and non-canonical pyrop-
tosis signaling pathway [80].  

The pathogenesis of atherosclerosis is characterized by 
recruitment of monocytes and lymphocytes, dysfunction of 
ECs, formation of foam cells (FCs), proliferation of smooth 
muscle cells (SMCs), secretion of proinflammatory cyto-
kines, accumulation and oxidation of LDL, adherence of 
platelets, and death of abundant cells [7][81]. Previous 
studies have confirmed that atherosclerosis is mainly at-
tributed to inflammation and the products of pyroptosis 
such as IL-1β, IL-18, IL-1α, ATP, and GSDMD-N, suggesting 
crucial role of pyroptosis in the pathogenesis of atheroscle-

rosis [21][82][83]. Pyroptosis is closely in relation to the 
progress of atherosclerosis [7][16][84]; Additionally, exten-
sive expression of NLRP3 was observed in ECs, macrophag-
es, and SMCs [85]. Therefore, pyroptosis in ECs, macro-
phage, and SMCs is of a particularly noteworthy concern. 

The ECs, locating and lining on the inner surface of ves-
sel walls, are firstly exposure to, and highly susceptible to 
metabolite-related endogenous danger signals, which plays 
a critical role in maintaining the fluidity and thrombo-
resistance of blood and regulating the permeability of vas-
cular wall [86]. Previous studies reported that the impair-
ment, loss of intima integrity, or dysfunction of ECs can 
initiate atherosclerosis [87][88][89]. The dysfunction of ECs 
is characterized by increased proinflammatory cytokines, 
elevated reactive oxidative species, chaotic vascular tone, 
and universal pyroptosis [7]. The activated ECs at the sites 
of inceptive atherosclerosis  up-regulate the  expression  of  

FIGURE 2: Schematic models of haem piracy from haemoglobin 
by the different Gram positive pathogens described herein. (A) 
In C. diphtheriae, two groups of surface exposed proteins bind Hb 
and Hb:Hp. HtaA is able to bind Hb and the Hb: Hp complex while 
HtaB is responsible for binding free haem, meanwhile ChtA/ChtC 
proteins bind directly only to the Hb: Hp complex. Both groups of 
proteins transfer haem to HmuT, the lipoprotein component of 
the ABC transporter for import through the lipid bilayer. (B) In S. 
aureus, surface exposed proteins IsdB or HarA/IsdH bind haemo-
globin at the cell surface and strip it’s haem. The haem can them 
be passed to any of the proteins IsA, IsdC and IsdE and unidirec-
tional transfer from IsaA – IsdC – IsdE leads to transport to the 
cytoplasm through the IsdDEF ABC transporter for transport into 
the cytoplasm. (C) At the surface of S. pyogenes, Shp extracts 
haem from Hb and Shr is able to obtain haem from both Hb and 
the Hb:Hp complex. These proteins transfer haem to lipoprotein 
SiaA for transport into the cell via SiaABC. 
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P-selectin, intercellular adhesion molecule-1 (ICAM-1) and 
vascular cell adhesion molecule-1 (VCAM-1), which are 
critical for attracting inflammatory cells, such as monocytes,  
for trans-endothelial recruitment [90]. Several cytokines 
and chemokines, such as IL-1α, ICAM-1, VCAM-1 and E-
selectin, in ApoE-/-/caspase-1-/- mice were lower than those 
in ApoE-/- mice [91]. Additionally, pyroptotic ECs contribute 
to endothelial dysfunction in terms of elevating the per-
meability of endothelial monolayer and increasing the mi-
gration and deposition of lipids, monocytes, and SMCs into 
the intima accompanied by inflammatory cytokine release, 
and canonical pathway of NLRP3 is the main mechanism of 
ECs pyroptosis in atherosclerosis [16]. 

Foam cells, derived from macrophages, are the main 
cells engaged in the lesions of atherosclerosis and play a 
vital role in plaque instability [92]. Monocytes are the most 
numerous leukocytes in the plaques, which can differenti-
ate into macrophages once they are recruited into arterial 
intima [21]. The death of macrophages can mediate the 
development of atherosclerotic lesions, which is manifest-
ed by promoting necrotic core formation, increasing 
plaque vulnerability, and accelerating thrombosis. It is 
worth pointing out that pyroptosis has been documented 
to contribute to a substantial proportion of macrophages 
death in atherosclerotic plaques [93]. Additionally, pyrop-
tosis in atherosclerotic plaques induces inflammation, 

 
FIGURE 3. Canonical pathway and non-canonical pathway of pyroptosis. The canonical pathway is a caspase1-dependent pyroptosis pathway, 
and cells can activate inflammatory vesicles to trigger pyroptosis in response to multiple factors that causes caspase-1 activation. It can mature 
and secret pro-inflammatory cytokines like IL-1β and IL-18 and simultaneously cleave GSDMD and oligomerize GSDMD-N-terminal fragment, 
which mediates the formation of membrane pores and subsequent pyroptosis. The non-canonical pathway is a caspase 4/5/11-dependent 
pyroptosis pathway that is activated by the Gram-negative bacterial cell wall fraction LPS, directly triggering pyroptosis through the cleavage of 
GSDMD. Meanwhile, the GSDMD-N-terminal fragment activates NLRP3 inflammasome to induce pyroptosis. NLRP3: NOD-like receptor protein 
3; ASC: adaptor protein termed apoptosis-associated speck-like protein containing an N-terminal pyrin domain (PYD) and a C-terminal caspase 
recruitment domain (CARD); GSDMD: gasdermin D; LPS: lipopolysaccharide. 
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which leads to the migration of macrophage and SMCs, 
and the formation of foam cells. Previous studies reported 
that Ox-LDL and cholesterol crystals could trigger NLRP3 
inflammasome and release bioactive IL-1β and IL-18 in 
macrophages [40]. Moreover, the activation of AIM2 in-
flammasome and subsequent formation of necrotic cores 
in macrophage pyroptosis can exacerbate atherosclerosis 
[94]. Taken together, these studies suggest that NLRP3-
dependent pyroptosis in macrophages and foam cells may 
promote the formation of necrotic core formation and the 
instability of plaque, and further contribute to the progres-
sion of atherosclerosis.  

Atherosclerotic plaque rupture is a common and im-
portant cause of thrombosis, which could further lead to 
myocardial infarction [95]. SMCs can produce extracellular 
matrix to form a fibrous cap through migrating from media 
layer to intima layer [96]. They are the main cellular com-
ponents of atherosclerotic lesions, and play a pivotal role 
in the development and progression of vascular disorders 
[97]. The stability of atherosclerotic plaque is mainly de-
pended on the thickness of the fibrous cap that is de-
creased in a state of inflammation [96]. The damage, dys-
function, or death of SMCs and subsequent collapse of 
extracellular matrix and collagen will thin the fibrous cap, 
which ultimately results in plaque rupture and complica-
tions related to it [98][99]. It has been reported that pyrop-
tosis in SMCs promotes inflammation, which wrecks the 
fibrous cap [100]. The impairment of fibrous cap aggra-
vates the instability and vulnerability of atherosclerotic 
plaque and increases the incidence of cardiovascular 
events [21]. Ox-LDL is a predominant component in ather-
osclerosis, which can lead to SMCs pyroptosis by activating 
NLRP3 inflammasome [16]. For example, VX-765, a specific 
inhibitor of caspase-1, inhibits the pyroptosis of SMCs [101]. 
Additionally, Ox-LDL induces caspase-1-mediated pyropto-
sis in SMCs [102]. Taken together, Ox-LDL may accelerate 
atherosclerotic plaque rupture by triggering SMCs pyropto-
sis, which may increase the instability of plaques and de-
grade fibrous cap through the pathway of NLRP3 inflam-
masome activation. 
 
RELATION BETWEEN NLRP3 INFLAMMASOME AND 
PYROPTOSIS 
Up-to-date, pyroptosis is a novelty pattern of GSDM-
induced pro-inflammatory cell death characterized by the 
release of a large number of pro-inflammatory factors such 
as IL-1β and IL-18 in a variety of diseases. Interesting, IL-1β 
and IL-18 are the typical downstream bioactive products of 
NLRP3 inflammasome activation based on results of previ-
ous studies. A hypothesis was arisen that NLRP3 inflam-
masome may closely link with pyroptosis. In fact, a plenty 
of research results confirm the hypothesis in term of coex-
istence between activation of NLRP3 inflammasome and 
occurrence of pyroptosis in organism 
[103][104][105][106][107][108][109]. Many in-depth stud-
ies have found the molecular mechanism of NLRP3 in-
flammasome in relation to pyroptosis. Briefly, external or 
internal stimuli, such as microorganism, particulates, and 

ATP, can trigger NLRP3 inflammasome assembly and sub-
sequently mature pro-caspase-1, which ultimately secret 
IL-1β and IL-18, and induce GSDMD-mediated pyroptosis. 
Specifically, NLRP3 inflammasome assembly promote pro-
caspase-1 activation into active caspase-1, which acceler-
ate pro-inflammatory factor release and GSDMD pore for-
mation in cell membrane, and further induce pyroptosis 
[103]. NLRP3 inhibitors can alleviate or reverse the activa-
tion of NLRP3 inflammasome-mediated pyroptosis 
[104][105][106][107][108][109]. Blocking NLRP3 and py-
roptosis is a new and effective strategy to inhibit inflamma-
tion and its related diseases, which may provide a unique 
perspective to deeply understand the relationship between 
NLRP3 inflammasome and pyroptosis [110]. 
 
MEDIATION AND THERAPEUTIC TARGETS OF PYROP-
TOSIS IN NLRP3 INFLAMMASOME AND ATHEROSCLE-
ROSIS 
The known signaling pathways of pyroptosis on atheroscle-
rosis are nuclear factors such as NF-κB, AMPK, MAPK, SIRT, 
as well as miRNA, which may shed light on therapeutic 
targets for the treatment of atherosclerosis [111]. The vital 
role of pyroptosis in the pathogenesis of atherosclerosis 
has generated a few specific inhibitors or agents that tar-
get bioactive substances such as NLRP3, caspase-1, caspa-
se-4/5/11, GSDMD, and other candidates in relation to 
pyroptosis pathway [7][81][84]. Pyroptosis-related athero-
sclerosis pathway covers the same targeted substances 
mentioned above, which may suggest that targeting NLRP3 
inflammasome may be a therapeutic strategy to treat ath-
erosclerosis. Previous studies have reported that NLRP3 
inflammasome inhibitors such as adiponectin, allicin, angi-
otensin, artemisinin, Bay 11-7082, BOT-4-one, BRC36, CY-
09, INF4E, MCC950, OLT1177, and oridonin, etc 
[11][84][112]. The known molecular mechanisms of these 
inhibitors of NLRP3 inflammasome include the impairment 
of ATPase activity, prevention of NLRP3 oligomerization, 
interference of ASC polymerization, obstruction of P2X7 
channel, destabilization of the lysosome, or influence 
ATP/dATP binding in the central NACHT domain [88]. Addi-
tionally, caspase-1 inhibitors such as VX-765, Ac-YVAD-cmk, 
Ac-WEHD-CHO, and Pralnacasan can curb pyroptosis. 
GSDMD is an imperative pyroptosis executor and the cor-
nerstone of transmembrane channels; the known GSDMD 
inhibitors, such as necrosulfonamide (NSA), Bay 11-7082 
and disulfiram, can also block GSDMD membrane pore 
formation. Particularly, some pyroptosis associated non-
coding RNAs such as miR-223, miR-30–5p, and lncR-
MALAT1 have been documented to treat atherosclerosis 
[96]. General risk factors for atherosclerosis are Ox-LDL, 
acrolein, and low shear stress, etc. Therefore, drugs or 
agents that target these NLRP3 inflammasome-related 
substances could be promising or preventing pyroptosis-
related diseases such as atherosclerosis. 
 
CONCLUSION 
As a proinflammatory form, pyroptosis plays a crucial role 
in the pathogenesis and complications of atherosclerosis 
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that mainly targets ECs, macrophages, and SMCs. Pyropto-
sis in atherosclerotic lesions mainly depends on the NLRP3 
inflammasome activation, and the signaling pathways in-
volved provide some potential targets for novel therapeu-
tic interventions in atherosclerosis. There still lacks in vivo 
studies and clinical trials that could provide a solid founda-
tion for developing pyroptosis-inducing drugs. Future stud-
ies should concentrate on the molecular mechanisms of 
NLRP3-mediated pyroptosis in atherosclerosis and other 
pyroptosis-related chronic diseases. 
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