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ABSTRACT  The deletion of the gene coding for poly(ADP-
ribose) polymerase-1 (PARP1) or its pharmacological inhi-
bition protects mice against cerebral ischemia and Parkin-
son’s disease. In sharp contrast, PARP1 inhibitors are in 
clinical use for the eradication of vulnerable cancer cells. It 
appears that excessive PARP1 activation is involved in a 
specific cell death pathway called parthanatos, while inhi-
bition of PARP1 in cancer cells amplifies DNA damage to a 
lethal level. Hence, PARP1 plays a context-dependent role 
in cell fate decisions.  In addition, it appears that PARP1 
plays an ambiguous role in organismal aging. 
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In biology, the integration of intracellular circuitries is 
achieved by the multifunctionality of molecules, molecular 
complexes and organelles [1]. Poly(ADP-ribose) polymer-
ase-1 (PARP1) exemplifies a multitasking protein that ful-
fills several signaling functions in the context of cellular 
stress response, senescence and aging, as well as patholog-
ical cell death. Here, we will briefly summarize the multiple 
functions of PARP1 (Figure 1). 
 

PARP1 IN DNA REPAIR: A TARGET FOR ANTICANCER 
DRUGS 
PARP1 is best known as is a DNA repair enzyme present in 
the nuclei of mammalian cells. In response to single-strand 
DNA breaks, PARP1 initiates the synthesis of poly(ADP-
ribose) (PAR) chains from nicotinamide adenine dinucleo-
tide (NAD+). This process results in the covalent attach-
ment of PAR to multiple proteins. PAR then acts as a signal 
for the recruitment and the activation of  other DNA  repair  
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Abbreviations: PAR – poly(ADP-ribose), NAD+ – nicotinamide 
adenine dinucleotide, PARP1 – poly(ADP-ribose) polymerase-1, 
AIF – apoptosis inducing factor, MOMP – mitochondrial outer 
membrane permeabilization, PAAN – parthanatos-associated 
apoptosis-inducing factor nuclease, MIF – macrophage 
migration inhibitor factor, MPTP – 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine, AIMP2 – aminoacyl-tRNA synthetase 
complex interacting multi-functional protein-2, MCAO – middle 
cerebral artery occlusion, AD – Alzheimer's disease, HD – 
Huntington's disease, ALS – amyotrophic lateral sclerosis, 
NAMPT – nicotinamide phosphoribosyltransferase, MMP – 
mitochondrial membrane permeabilization, MIMP – 
mitochondrial inner membrane permeabilization, DBC1 – 
protein deleted in breast cancer 1. 
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enzymes [2]. Logically, cancer cells that are treated with 
DNA damaging agents (such as radiotherapy or chemo-
therapeutic cytotoxicants such as cisplatin) must activate 
PARP1 to survive. Indeed, cisplatin-resistant cells upregu-
late PARP1 activity and hence contain higher PAR levels in 
their nuclei [3]. This is clinically relevant because high PAR 
levels detected by immunohistochemistry have a poor 
prognostic impact in several cancer types, correlating with 
reduced immunosurveillance [3-6]. In addition, BRCA2- and 
other homologous recombination-defective cells have in-
creased PARP1 activation meaning that cell survival relies 
on a constitutive activation of PARP1 [7].  

Pharmacological PARP1 inhibitors can be used to sensi-
tize cancer cells to chemotherapy and radiotherapy [8-10]. 
Moreover, cells relying on constitutive PARP1 activation 
become sensitive to monotherapy with PARP1 inhibitors 
[3,6,7]. Indeed, several PARP1 inhibitors such as niraparib, 
olaparib, rucaparib and talazoparib have been clinically 
approved for the treatment of oncological patients with 
germline mutations in BRCA1/2, as well as for epithelial 
ovarian, fallopian tube and primary peritoneal cancer 

[9,10]. These small-molecule inhibitors interact with the 
binding site of NAD+ and inhibit the synthesis of PAR chains. 
However, the cytotoxic effect of PARP1 inhibitors against 
cancer cells is mostly mediated by the trapping of PARP1 at 
sites of DNA damage that generates stalled replication 
forks during the S phase of the cell cycle [11-13]. Therefore, 
novel PARP1 inhibitors with increased trapping capacity 
are promising candidates to target cancer cell death [14]. 
Of note, inhibition of PARP1 does not only have cancer cell-
autonomous effects but also stimulates T lymphocyte-
mediated anticancer immune response through yet-to-be-
elucidated mechanisms [6, 12, 15]. Thus, combining PARP1 
inhibition with immune checkpoint blockade holds promise 
for the treatment of ovarian cancer patients [16].  

 
PRO-DEATH ACTIVITY OF PARP1 IN PARTHANATOS  
Ted and Valina Dawson described a cell death modality 
relying on the overactivation of PARP1 and PAR-induced 
mitochondrial outer membrane permeabilization (MOMP) 
that they coined “parthanatos” [17]. In this lethal pathway, 
oxidative or nitrosative stress results in the activation of 

 
FIGURE 1. PARP1 context-dependent functions in cellular life and death. Poly(ADP-ribose) polymerase-1 (PARP1) is a DNA repair enzyme 
activated in cancer cells treated with DNA damaging agents, and pharmacological PARP1 inhibitors can be used to improve chemotherapy 
and radiotherapy efficacy. PARP1 inhibition may also have neuroprotective effects by decreasing parthanatos-induced neuronal death. 
However, the ambivalent role of PARP1 in organismal aging and cell death modalities should be considered in view of the possible side ef-
fects of long-term treatments with PARP1 inhibitors. PARP1, Poly(ADP-ribose) polymerase-1; PAR: Poly(ADP-ribose); AIF: apoptosis inducing 
factor. 
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PARP1. PAR accumulating at mitochondrial membranes 
then triggers the release of the intermembrane protein 
apoptosis inducing factor (AIF, official gene/protein name 
AIFM1) that subsequently interacts with parthanatos-
associated apoptosis-inducing factor (AIF) nuclease (PAAN), 
also known as macrophage migration inhibitor factor (MIF). 
PAAN is a member of the PD-D/E(X)K nuclease family and 
acts as a final executioner in parthanatos. The genetic de-
pletion or pharmacological inhibition of PARP1 and PAAN 
prevents neurodegeneration of dopaminergic neurons 
induced by stereotactic intrastriatal injection of a-
synuclein preformed fibrils, systemic administration of the 
Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) or overexpression of the parkin 
substrate aminoacyl-tRNA synthetase complex interacting 
multifunctional protein-2 (AIMP2) [18-20]. Parthanatos has 
been involved in rodent models of ischemic stroke in which 
PARP1 inhibitors given within 4 to 6 hours after middle 
cerebral artery occlusion (MCAO) confer neuroprotection 
[21]. Other disease models in which PARP1 inhibitors have 
cytoprotective effects include Alzheimer's disease (AD), 
Huntington's disease (HD) and amyotrophic lateral sclero-
sis (ALS) [22], experimental retinal detachment [23], as well 
as ischemia/reperfusion injury of the kidney or the liver [24, 
25]. Parthanatos has also been involved in human psoriasis 
in which PARP1 is overactivated downstream of the NAD+ 
generating enzyme nicotinamide phosphoribosyltransfer-
ase (NAMPT) and the translocation of AIF from mitochon-
dria to nuclei can be observed in skin lesions [26]. As an 
aside, cancer cells can die in response to specific drugs or 
drug combinations in a PARP1-dependent fashion [27-29]. 
Altogether, it appears that, outside of the realm of oncolo-
gy, PARP1 inhibition might be useful for the treatment of 
diseases, many of which are caused by the acute, massive 
or chronic, insidious loss of neurons.   
 
PRO-APOPTOTIC CLEAVAGE AND INACTIVATION OF 
PARP1 
Apoptosis usually involves two major hierarchically related 
events, namely (i) mitochondrial membrane permeabiliza-
tion (MMP) and (ii) activation of specific set of proteases, 
which are called caspases. MMP may occur to variable 
proportions as mitochondrial inner membrane permeabili-
zation (MIMP) and MOMP, leading to the arrest of oxida-
tive phosphorylation and other essential metabolic func-
tions, hence usually sealing the cell’s fate [30, 31]. MOMP 
causes the release of proteins that are found in the inter-
membrane space or are loosely attached to the outer sur-
face of the inner membrane into the cytosol. One promi-
nent example is cytochrome c which, once released from 
mitochondria, interacts with APAF1 to stimulate the for-
mation of the apoptosome, which is a caspase-9 activation 
complex [32]. Caspase-9 is an initiator caspase that then 
activates other caspases such as caspase-3 and caspase-7 
that are effector caspases and destroy multiple intracellu-
lar proteins, hence dismantling the cell from inside [31]. 
When caspases are inhibited, MMP causes cell death, 
though without the morphological appearance of apopto-

sis with nuclear pyknosis, rounding of the cellular contours, 
shrinkage of the cytoplasm and formation of apoptotic 
blebs. Rather, MMP without subsequent caspase activation 
results in necrotic cell death with cellular oncosis, organel-
lar swelling and early plasma membrane rupture [33]. In 
this context, it is important to note that PARP1 is a promi-
nent caspase-3/7 substrate and that caspase-digested 
PARP1 loses its enzymatic function. Thus, when cells die in 
the absence of caspase activation, PARP1 tends to become 
activated by damaged DNA, hence futilely consuming ATP 
and NAD+, which contributes to the lethal bioenergetic 
crisis that culminates in necrosis. In this context, the genet-
ic or pharmacologic inhibition of PARP1 favors the apoptot-
ic rather than necrotic demise of dying cells [34, 35]. Thus, 
in certain situations, the activity of PARP1 does not deter-
mine the death/life decision itself but rather affects the 
propensity to succumb to one or the other lethal subrou-
tine: apoptosis or necrosis.  
 
PRO-AGING AND ANTI-AGING EFFECTS OF PARP1 
PARP1 is necessary for genomic stability, suggesting that its 
inhibition should derive genomic instability, which is one of 
the principal hallmarks of aging as well as of cancer. Indeed, 
transgenic PARP1 overexpression in basal skin keratino-
cytes from mice suppresses skin papilloma formation in a 
two-stage skin carcinogenesis protocol [36]. In Drosophila, 
conditional overexpression of PARP1 in the imago increas-
es median lifespan of females and the maximum lifespan of 
males [37]. In mice, knockout of PARP1 accelerates aging 
and causes the precocious manifestation of spontaneous 
carcinogenesis, as well as a shift to a higher frequency of 
epithelial cancers of the lung, liver and uterus [38]. In pa-
tients with solid tumors, treatment with PARP1 inhibitors, 
results in an increased incidence of myelofibroblastic syn-
drome (which is a typical age-associated condition) and 
acute myeloid leukemia (which often develops from myelo-
fibrosis) [39]. Possible mechanisms accounting for an age-
related decline in PARP1 activity include a progressive de-
pletion of the NAD+ [40]. This reduces PARP1 activity not 
only because NAD+ is an essential PARP1 substrate, but 
also due to the reduced binding of NAD+ to the protein 
deleted in breast cancer 1 (DBC1), which then engages in 
an inhibitory interaction with PARP1 [41]. Altogether, the 
aforementioned findings suggest that PARP1 has an anti-
aging function.  

In sharp contrast, there are also arguments in favor of a 
pro-aging activity of PARP1. Thus, pharmacological PARP1 
inhibition rescues the short lifespan of hyperglycemic Cae-
norhabditis elegans [42], improves neurovascular and cog-
nitive parameters in aging mice [43], and ameliorates car-
diac performance in aging rats in which it also enhances 
acetylcholine-induced, nitric oxide-mediated vascular re-
laxation [44]. Conversely, mice expressing a human PARP1 
transgene exhibit reduced healthspan and lifespan, ac-
companied by reduced hair growth and premature mani-
festation of inflammation and age-associated pathologies, 
such as anemia, adiposity, cardiomyopathy, dermatitis, 
hepatitis, kyphosis, nephropathy, pneumonitis, as well as 
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an increase in the incidence of carcinomas [45]. The mech-
anisms accounting for these pro-aging effects of human 
PARP1 in mice are elusive. However, they plead for an am-
biguous, dose-dependent implication of PARP1 in the aging 
process.  

 
CONCLUSION 
Pharmacological inhibition of PARP1 may kill those cancer 
cells that are undergoing constant endogenous DNA dam-
age due to defects in DNA repair enzymes as well as cells 
that are being exposed to DNA damaging irradiation or 
cytotoxicants. Paradoxically, PARP1 inhibition has potent 
cell death-inhibitory effects in other contexts, in particular 
against parthanatos, a non-apoptotic modality of cellular 
demise that relies on the enzymatic overactivation of 
PARP1 and that appears to be particularly prevalent in 
neurological diseases. In addition, PARP1 inhibition may 
accelerate or retard age-related pathologies, suggesting 
that PARP1 has an ambiguous role in aging as well. This 
consideration is important in view of the possible side ef-
fects of long-term treatments with PARP1 inhibitors.  
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