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Bariatric surgeries like vertical sleeve gastrectomy 
(VSG) and Roux-en-Y gastric bypass (RYGB) cause well-
established shifts in the gut microbiota, but how this 
contributes to their unique metabolic benefits is 
poorly understood. Jin et al and Yadav et al now pro-
vide two complementary lines of evidence suggesting 
that gut microbiota-derived metabolites after VSG and 
RYGB activate thermogenesis in fat through distinct 
mechanisms, to in turn promote weight loss and/or 
improvements in glycemic control. 
 
Despite the implementation of numerous weight loss ini-
tiatives by various governments, the global prevalence of 
obesity continues to rise [1]. This not only takes an often 
dismissed personal toll on many individuals living with obe-
sity [2], but also represents an enormous burden to health-
care systems [3] and is a leading preventable cause of de-
ath [1]. Of the treatments that are currently available for 
severe obesity, bariatric surgeries such as vertical sleeve 
gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) 
remain the most effective [4]. These surgeries not only 
cause unparalelled levels of weight loss (up to 25-35%) [5], 
but also induce a host of other metabolic benefits including 
remission of the type 2 diabetes [6] and amelioration of 
the fatty liver disease [7] that usually accompany obesity. A 
number of mechanisms have been proposed to contribute 
to these favourable metabolic outcomes, most notably the 
rise in circulating gut hormones like glucacon-like peptide 1 
(GLP-1) [8]. There are also well-established shifts in the gut 
microbiota after bariatric surgery, although this appears to 
be more pronounced for RYGB than for VSG likely due to 
the differences in anatomical configurations between the 

two procedures [9]. Interestingly, while gut hormone pre-
perations including the stable GLP-1 analogue semaglutide 
cause weight loss approaching the level of bariatric surgery 
(up to 10-20%) [10], GLP-1 receptor signalling seems to be 
dispensable for the metabolic benefits of both VSG [11] 
and RYGB [12], at least in rodent models. Therefore, the 
hunt is still very much on for the identification of factors 
that contribute to the weight loss and improved glycemic 
control associated with bariatric surgery, as this will 
undoubtedly aid in the discovery of novel anti-obesity and 
type 2 diabetes drugs.  

Since its rediscovery in adult humans, research into 
thermogenic fat has increased tremendously [13]. This is 
because activation of thermogenesis in fat either by cold 
exposure or by pharmacological means has long been 
known to promote metabloic health in rodents, and it is 
becoming increasingly evident that it does so in the clinical 
setting, too [13]. While both gut microbiota and bariatric 
surgery have been shown to activate thermogenesis in fat 
[14], their connection has, until recently, not been addres-
sed. Two new studies by Jin et al [15] and Yadav et al [16] 
now provide causal evidence, using complementary appro-
aches, that VSG and RYGB activate thermogenesis in fat 
through distinct microbiota-dependent mechanisms, to in 
turn promote metabolic health. 

In the first study by Jin et al [15] VSG and sham surgery 
were performed on diet-induced obese mice. The authors 
found that VSG-operated mice displayed reduced body 
weight associated with increased oxygen consumption 
compared with sham-operated mice. Interestingly, this was 
not associated with lasting reductions in food intake in 
VSG-operated mice, reiterating how rodent models of bari-
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atric surgery achieve weight loss predominantly through 
increasing energy expenditure rather than through decrea-
sing energy intake, which is the opposite to the case in 
humans [17]. When the authors analysed the 3 major fat 
depots in mice, they found that the thermogenic 
mitochondrial molecule uncoupling protein 1 (UCP1) was 
increased only in subcutaneous white fat and not in 
epididymal white fat or interscapular brown fat. Because 
the sympathetic nervous system is an important mediator 
of thermogenesis, the authors then denervated subcuta-
neous white fat by injecting the neurotoxin 6-
hydroxydopamine locally into this depot. Unexpectedly, 
this had minimal impact on the efficacy of VSG to exert its 
metabolic benefits and to increase UCP1 expression in 
subcutaneous white fat. At this point, it should be stated 
that these findings contrast sharply with the impact of VSG 
on diet-induced obese rats, in which it was shown that 
sympathetic nervous system innervation of brown fat is 
essential for the reductions in body weight and impro-
vements in glycemic control postoperatively [18], again 
reiterating species differences in the mechanisms of baria-
tric surgery.   

Jin et al [15] then reasoned that gut microbiota-derived 
products could mediate the activation of thermogenesis in 
subcutaneous white fat after VSG. Indeed, the authors 
could confirm that VSG increased the fecal abundance of 
Firmicutes and decreased the fecal abundance of Bac-
teriodetes, associated with stabilization of the intestinal 
epithelial barrier. Mass spectrometry analysis then reve-
aled that 3 metabolites were increased in the feces of VSG-
operated mice: licoricidin, muramic acid, and 3-
hydroxybutyryl carnitine. Moreover, fecal licoricidin not 
only negatively correlated with various gut microbiota 
known to promote metabolic disease, but circulating licori-
cidin levels were doubled in VSG-operated mice suggesting 
that it could communicate directly with subcutaneous 
white fat. To formally test if gut microbiota-derived pro-
ducts contribute to thermogenesis in subcutaneous white 
fat after VSG, mice were treated with a broad spectrum 
antibiotic cocktail via their drinking water for 2 weeks. Stri-
kingly, this not only prevented the weight loss and meta-
bolic benefits associated with VSG similar to a previous 
study in diet-induced obese mice [19], but it also preven-
ted the increase in oxygen consumption and subcutaneous 
white fat UCP1 expression as well as the increase in circula-
ting licoricidin. However, this relatively unspecific approach 
does not reveal which gut microbiota produce and release 
licoricidin, which is an isoflavenoid normally found in die-
tary licorice, nor does it prove that licoricidin per se contri-
butes to the activation of thermogenesis in subcutaneous 
white fat after VSG.  

Next, Jin et al [15] determined if licoricidin given alone 
via oral gavage can at least recapitulate the metabolic 
benefits of VSG. Remarkably, licoricidin when admistered 
via this route prevented body weight gain, improved gly-
cemic control, increased oxygen consumption and increa-
sed UCP1 expression in subcutaneous white fat. To dissect 
the molecular mechanism by which licoricidin activates 

thermogenesis in subcutaneous white fat, cell culture ex-
periments were performed. Like the sympathetic nervous 
system, licoricidin recruited the protein kinase A (PKA) 
signalling pathway in primary subcutaneous white adipocy-
tes as shown through phosphoblots of PKA substrates in-
cluding cyclic AMP response element binding protein 
(CREB). Interestingly, the tripling of intacellular cAMP 
levels by licoricidin treatment did not appear to be due to 
the inhibition of phosphodiesterases 3 and 4 which is 
known to promote thermogenesis in epididymal white fat 
[20, 21] and subcutaneous white fat [22], respectively. 
Instead, through a combination of confocal microscopy on 
primary subcutaneous white adipocytes, pull-down assays 
on beta-3 adrenergic receptor-overexpressing human em-
bryonic kidney (HEK) cells and bioinformatic analysis, licori-
cidin was shown to bind to transmembrane 3 (TM3), TM6 
and TM7 of the beta-3 adrenergic receptor. Moreover, the 
induction of UCP1 protein in primary subcutaneous white 
adipocytes by licoricidin was abrogated in cells with knock-
down of the beta-3 adrenergic receptor, providing strong 
evidence that licoricidin promotes thermogenesis in 
subcutaneous white fat by positively modulating beta-3 
adrenergic receptor activity. Finally, to determine if local 
licoricidin action in subcutaneous white fat is sufficient to 
recapitulate the effects of systemic licoricidin, it was in-
jected at lower doses directly into this depot. This tar-
getted licoricidin treatment had overlapping metabolic 
effects with systemic licoricidin treatment, although expe-
riments in PR domain containing 16 (PRDM16)-deficient 
mice, which are incapable of showing themogenesis in 
subcutaneous white fat in response to beta-3 adrenergic 
receptor agonist treatment [23], are needed to determine 
to what extent activation of thermogenesis in subcutane-
ous white fat by licoricidin contributes to the metabolic 
benefits of VSG as well as systemic licoricidin treatment.  

In the other study by Yadav et al [16] stool samples 
were collected from 4 patients with morbid obesity before 
and 1-6 months after RYGB, and subsequently transferred 
to germ-free mice. What sets the approach of Yadav et al 
[16] apart from similar studies is that samples before and 
after RYGB from the same individual patient were orally 
gavaged into recipient germ-free mice in a longitudinal 
design rather than in a cross-sectional design, which pre-
serves the inter-individual variability in the response to 
bariatric sugery. Another notable detail of the study of 
Yadav et al [16] is that the germ-free mice in their study 
were rendered obese on a sterile and costly Western-style 
diet prior to receiving stool samples from patients. Perhaps 
equally as important is the delayed timepoint after fecal 
microbiota transfer (12 weeks) that recipient germ-free 
mice were subjected to metabolic phenotyping, allowing 
sufficient time for the transferred fecal microbiota to ex-
pand and colonize the gastrointestinal tract and exert 
metabolic effects. In this way, Yadav et al [16] found that 
mice receiving post-RYGB feces have improved glycemic 
control and increased oxygen consumption compared to 
mice receiving pre-RYGB feces. Notably, this was indepen-
dent of any effects on food intake and body weight, sug-
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gesting that post-RYGB fecal microbiota have little impact 
on regulating energy homeostasis. The authors then per-
formed 18F-fluorodeoxyglucose positron emission tomo-
graphy (18F-FDG PET) imaging experiments to determine if 
brown fat contributes to increased energy expenditure in 
mice receiving post-RYGB fecal microbiota. This revealed 
that brown fat 18F-FDG uptake in response to overnight 

cold exposure, the natural stimulus for brown fat, almost 
doubles in mice receiving post-RYGB feces compared with 
mice receiving pre-RYGB feces. Accordingly, brown fat 
UCP1 protein expression was also markedly enhanced.  

Considering that the post-RYGB feces-treated mice 
showed enhanced insulin sensitivity in the absence of any 
differences in body weight, it would have been interesting 

 
FIGURE 1: Mechanisms behind activation of thermogenesis by gut microbiota after bariatric surgery. The findings of Jin et al [15] and Yadav 
et al [16] demonstrate that the shifts in gut microbiota after RYGB and VSG lead to increased gut levels of butyrate and licoricidin, 
respectively. This then leads to activation of brown fat thermogenesis after RYGB, possibly via a mechanism involving monocarboxlate trans-
porter 1 (MCT1)-mediated transport of circulating butyrate into brown adipocytes [25], and activation of subcutaneous white fat thermoge-
nesis after VSG, possibly via a mechanism involving the positive modulation of beta-3 adrenergic receptor in white adipocytes by increased 
circulating licoricidin [15]. 
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to determine if insulin increases brown fat 18F-FDG uptake. 
This could have provided evidence that post-RYGB micro-
biota enhance blood glucose clearance in response to insu 

lin treatment through using brown fat as a glucose sink. 
It would have also been interesting to determine if the 
patients themselves showed increased oxygen consumpt-
ion and brown fat 18F-FDG uptake after RYGB, which would 
have provided the key evidence that this beneficial meta-
bolic change in the host is potentially gut microbiota-
mediated and is transmissable to germ-free mice. 

Finally, after showing that differences in patient fecal 
microbiota after RYGB can be transferred to germ-free 
mice, such as an increase in Akkermansia municiphila, Ya-
dav et al performed metabolomic analyses of their feces. 
This revealed that thermogenic molecules like the short 
chain fatty acid butyrate [24, 25] and acylcarnitine [26] 
were increased in mice receiving post-RYGB fecal microbi-
ota along with tryptophan metabolites, while various 
amino acids including the branched chain ones valine, leu-
cine and isoleucine which are thought to induce insulin 
resistance [27] were reduced although this has been 
shown not to be essential for the improvements in glyce-
mic control after bariatric surgery [28]. Considering that for 
brown fat to be affected by these metabolites they need to 
first reach the circulation, it would have been interesting to 
perform metabolomics on systemic blood as well as feces 
like in the study of Jin et al [15]. It would have also been 
interesting to determine if butyrate does indeed contribute 
to activation of brown fat themogenesis and improved 
glycemic control by post-RYGB fecal microbiota through 
inhibiting monocaroxylate transporter 1 (MCT1) which has 
been shown to mediate butyrate’s thermogenic actions on 
brown adipocytes [25].    

While we are witnessing the dawn of a new era for 
obesity pharmacotherapy with gut hormone preperations 
causing unprecendented levels of weight loss, bariatric 
surgery remains the most effective [4]. The high quality 
studies of Jin et al [15] and Yadav et al [16] are groundbre-
aking in the field as they provide causal evidence that the 
well-established shifts in gut microbiota after bariatric sur-
gery contribute to improved metablic outcomes by activa-
ting thermogenesis in fat, possibly through microbial me-
tabolites such as licoricidin and butyrate (Figure 1). No-

tably, changes in bile acid metabolism by gut microbiota 
after VSG leads to the generation of cholic acid-7-sulfate in 
the liver and its accumulation in the gut [29], which has 
been shown to promote metabolic health in diet-induced 
obese mice through increasing endogenous GLP-1 release 
[30]. Thus, understanding the molecular and cellular 
mechanisms behind how bariatric surgery favourably im-
pacts various metabolic tissues provides a treasure trove 
for identifying novel factors to treat obesity and type 2 
diabetes. 

The findings of Jin et al [15] and Yadav et al [16] de-
monstrate that the shifts in gut microbiota after RYGB and 
VSG lead to increased gut levels of butyrate and licoricidin, 
respectively. This then leads to activation of brown fat 
thermogenesis after RYGB, possibly via a mechanism invol-
ving monocarboxlate transporter 1 (MCT1)-mediated 
transport of circulating butyrate into brown adipocytes 
[25], and activation of subcutaneous white fat thermoge-
nesis after VSG, possibly via a mechanism involving the 
positive modulation of beta-3 adrenergic receptor in white 
adipocytes by increased circulating licoricidin [15].  
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