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ABSTRACT  Recent observations indicate that the pathogenesis and 
prognosis of hormone-receptor breast cancer is not only dictated by the 
properties of the malignant cells but also by immune and microbial pa-
rameters. Thus, the immunosurveillance system retards the develop-
ment of hormone-positive breast cancer and contributes to the thera-
peutic efficacy of estrogen receptor antagonists and aromatase inhibi-
tors. Moreover, the anticancer immune response is profoundly modu-
lated by the local and intestinal microbiota, which influences cancer 
cell-intrinsic signaling pathways, affects the composition and function 
of the immune infiltrate present in the tumor microenvironment and 
modulates the metabolism of estrogens. Indeed, specific bacteria in the 
gut produce enzymes that affect the enterohepatic cycle of estrogen 
metabolites, convert estrogens into androgens or generate estrogen-
like molecules. The knowledge of these circuitries is in its infancy, call-
ing for further in-depth analyses. 
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INTRODUCTION 
Immunotherapy is now part of standard clinical practice in 
cancer therapy. Although historically disappointing, immu-
notherapy in breast cancer (BC) has recently gained mo-
mentum. Thus, treatment with pembrolizumab, an im-
mune checkpoint inhibitor (ICI) targeting PD-1 (pro-
grammed death-1), appears to be effective against early 
stage and advanced triple negative breast cancer (TNBC) 
according to the randomized Phase III trials KEYNOTE-522 
[1] and KEYNOTE-355 [2], respectively. These trials led to 
the first FDA approval of immunotherapy for the treatment 
of TNBC. 

Nevertheless, hormone receptor-positive (HR+) breast 
cancer (BC) is still lagging behind in the development of 
immunotherapy. Historically, HR+ BC has been mostly 
treated by hormone therapies (i.e., estrogen receptor 
blockade or aromatase inhibitors that suppress estrogen 
biosynthesis) and conventional chemotherapies (e.g., an-
thracycline and taxanes) and considered to be primarily 

immunoresistant [3–5]. This idea has, however, been at-
tenuated by the observation that HR+ BC can be under im-
munosurveillance. For example, ductal carcinomas in situ 
(DCIS), which mostly are HR+ [6], have a particularly low 
incidence of recurrence after surgical removal when the 
ratio of cytotoxic T lymphocytes over regulatory T cells 
(CTL/Treg ratio) infiltrating the normal breast tissue indi-
cates a favorable immune tonus [7]. Moreover, the effects 
of hormone therapy against HR+ BC involves a strong im-
mune component [8–10]. 

The composition of local and intestinal microbiota, as 
well as its therapy-induced modifications affect the re-
sponse to anti-cancer treatments (i.e., chemotherapy, tar-
geted therapy and immunotherapy) [11, 12]. In addition, 
the gut microbiota strongly influences the therapeutic re-
sponse of hormone dependent cancers [13, 14]. Since an-
drogen deprivation therapy (ADT) of prostate cancer must 
induce an anticancer immune response to be efficient, and 
since the immune tonus is influenced by intestinal com-
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mensals, dysbiosis may have a negative impact on the effi-
cacy of ADT [13]. Moreover, intestinal bacteria that pro-
duce androgens as well as bacteria that degrade drugs 
used for ADT, can interfere with the efficacy of ADT [14, 
15]. By analogy to prostate cancer ADT, we surmise that BC 
hormone therapy might be influenced by the microbiota, 
and this is the topic of the present mini-review. 

Here, we summarize accumulating evidence indicating 
that the microbiota modulates the efficacy of hormone 
therapy against HR+ BC. This modulation involves two dis-
tinct facets. On one hand, the microbiota present in the 
gut or in malignant tissues affects the immune tonus, thus 
attenuating or enhancing the anticancer immune response 
stimulated by hormone therapy. On the other hand, bacte-
ria reportedly can synthesize, recycle or destroy estrogens 
in the gut, thereby affecting the concentrations of cancer 
cell-supportive hormone. We will discuss the clinical impli-
cation of these findings and detail promising strategies for 
intervening on the microbiota.   

 

IMMUNOSURVEILLANCE OF HR+ BC 
Inflammation in the pathogenesis of HR+ BC 
HR+ BCs are commonly described as immunologically cold 
tumors, with low abundance of tumor-infiltrating lympho-
cytes (TILs) [16] and scarce expression of PD-L1 (pro-
grammed cell death protein-ligand 1) [17, 18]. Nonetheless, 
mounting evidence suggests that immunity and inflamma-
tion may be relevant to HR+ BC biology [19]. Thus, it turned 
out that, in a mouse model, medroxyprogesterone acetate 
(MPA, a progesterone analogue) and 7,12-
dimethylbenz[a]anthracene (DMBA, a DNA damaging 
agent)-induced HR+ BCs are under strong immunosurveil-
lance [20]. MPA/DMBA-induced mammary carcinomas 
resemble human luminal B HR+ HER2- (human epidermal 
growth factor receptor 2- negative) BC, in particular with 
respect to their transcriptome; as well as with respect to 
limited immune infiltration and low responsiveness to PD-1 
blockade [20]. Nonetheless, MPA/DMBA-induced onco-
genesis and tumor progression is accelerated in the con-
text of natural killer (NK) and T cell defects, demonstrating 
that MPA/DMBA-induced tumors are under immunosur-
veillance [20].  

Leukocytes do not only mediate immune responses 
necessary for immunosurveillance but are also involved in 
procarcinogenic inflammation, likely contributing to the 
protumoral effects of obesity, which is the most prevalent 
pathological condition affecting humanity. Indeed, obesity 
promotes a state of chronic inflammation leading to the 
local accumulation of macrophages, the production of cy-
tokines (such as CCL2 and IL-1β), as well as immunosup-
pression of T lymphocytes [21]. The obesity-associated 
accumulation of necrotic adipocytes surrounded by mac-
rophages forming crown-like structures (CLS) in breast tis-
sue has been associated with poor prognosis [22, 23]. Of 
note, high-fat diet (HFD), which causes obesity in mice, 
accelerated MPA/DMBA-induced carcinogenesis and 
shortened overall survival, while alternative day fasting 
decelerated the process and extended overall survival [20]. 

This observation appears concordant with the fact that 
obesity is a major risk factor for BC development, progres-
sion and therapeutic response [24, 25]. This is most clearly 
shown for postmenopausal HR+ BC, though less established 
for TNBC and human epidermal growth factor-2-positive 
(HER2+) BC [26]. Indeed, overabundant white adipose tis-
sue expresses enzymes that catalyze estrogen biosynthesis 
[27, 28]. Thus, compared to that from lean BC carriers, the 
breast tissue from obese women with BC contains elevated 
levels of aromatase, a key enzyme in estrogen biosynthesis 
[29], possibly compromising the therapeutic effects of 
hormone therapy [30]. 
 
Immunomodulation by endocrine therapy 
Oophorectomy can postpone the death of mice after intra-
peritoneal injection of ovarian cancer cells (ID8-
Defb29/Vegfa cells, which are not responsive to estrogens 
in vitro), and this effect is lost in Rag1-/- mice (which lack B 
and T cells), pointing to the possible implication of the im-
mune system in endocrine therapy [31]. In the 
MPA/DMBA-induced mouse mode of HR+ BC, genetically-
induced estrogen receptor deficiency leads to a delay in 
cancer development, and this effect could be phenocopied 
by continuous treatment with the estrogen receptor an-
tagonist tamoxifen. However, the tamoxifen-mediated 
delay in cancer development and progression was only 
observed in immunocompetent, not in immunodeficient 
(Rag2−/−Il2rg−/−) animals, underscoring the importance of 
immunosurveillance for the anticancer efficacy of estrogen 
pathway blockade [20].  

Most immune cells express estrogen receptors (ER), 
making these cells sensitive to estrogens and their modula-
tors [32, 33]. Thus, beyond their direct cell-autonomous 
effects on HR+ BC cells, tamoxifen and aromatase inhibitors 
may mediate effects on the immune system. Indeed, ta-
moxifen reduces the infiltration by, and immunosuppres-
sive activity of, myeloid-derived suppressor cells (MDSCs) 
in BC [31]. Tamoxifen has been suggested to block M2 po-
larization of the microglia in the brain, thereby inhibiting 
BC brain metastasis [34]. The aromatase inhibitor fulves-
trant significantly reduced macrophage and neutrophil 
neutralization of human BC transplanted into T cell-
deficient mice [35]. Another aromatase inhibitor, anastro-
zole, inhibits the differentiation of naïve T cells into Treg, 
promoted immunostimulatory cytokines such as IFN-γ and 
IL-12, and decreased immunosuppressive cytokines such as 
IL-4 and IL-10 [36].  

In accord with this preclinical literature, in two inde-
pendent cohorts of patients receiving neoadjuvant aroma-
tase inhibitors, the CTL/Treg ratio was significantly in-
creased and Forkhead box P3 (FOXP3+) Tregs decreased in 
responders but not non-responders after estrogen depriva-
tion [8, 9]. Moreover, the abundancy of TILs constitutes a 
predictive biomarker for tamoxifen responses in premeno-
pausal breast cancer [10]. Thus, estrogen-targeted thera-
pies have an immunomodulatory capacity, which might be 
enhanced by immunotherapy. Different clinical strategies 
are currently under evaluation, such as the combination of 
an HDAC inhibitor (vorinostat) and a PD-1 inhibitor (pem-
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brolizumab) with tamoxifen (NCT02395627). Moreover, 
trials are addressing the efficacy of therapeutic vaccination 
against HR+ BC (NCT02229084, NCT00925548). 

In summary, it appears that the immune system can 
control HR+ BC to some extent and that hormone therapy 
mediates at least part of its effects on HR+ BC by dampen-
ing protumorigenic inflammation, as well as by restoring 
immunosurveillance. 

 

CONTRIBUTION OF MICROBIOTA TO CARCINOGENESIS 
AND PROGNOSIS OF HR+ BC 
Intestinal microbiota 
Some data suggest a link between the gut microbiota and 
breast cancer risk and prognosis [37]. In one study, stool 
samples from 31 patients with early BC were examined by 
16S rRNA sequencing and RT-qPCR for genes specific for 
different bacterial families or species [38]. The authors 
concluded that patients with stage II-III (versus stage I) BC 
were enriched for Clostridium leptum and Clostridium coc-
coides, which both belong to the Firmicutes phylum and 
express β-glucuronidases that may favor the reabsorption 
of free estrogen [38]. However, circulating estrogen levels 
were not measured in this study to support this conjecture.  

More recently, shotgun metagenomics was used to de-
termine the composition of the fecal microbiota in 121 
specimens from 76 early, mostly RH+ BC patients [39]. The 
study corroborated the previously suggested deleterious 
role in BC outcome of Clostridiaceae family members (Clos-
tridium citroniae, Clostridium bolteae, Clostridium clos-
tridioforme, Clostridium symbosium, Clostridium aldenese, 
Clostridium hathewayi, Clostridium asparagiforme) as also 
seen in other malignancies (kidney, lung) [40, 41]. In con-
trast, Eubacterium rectale, Methanobrevibacter smithii, 
Coprococcus comes, Coprococcus catus and Actinobacteria 
(Collinsella aerofaciens) were associated with healthy sta-
tus, as well as good prognosis BC (stage I or absence of 
lymph node involvement) [39] in line with previous reports 
in patients with kidney cancer or melanoma treated with 
immune checkpoint inhibitors [41, 42]. Akkermansia mu-
ciniphila, which is known to protect against metabolic syn-
drome and obesity [43] and stimulates anticancer immune 
responses associated with favorable prognosis in lung and 
kidney cancer patients [12, 40, 44] was found to be associ-
ated with small BC tumor size (pT1). Of note, 55% of wom-
en with BC lacked detectable A. muciniphila, as also ob-
served in the healthy population, but consistent with the 
association of BC with type 2 diabetes and obesity [39]. In 
immunocompetent mice orally gavaged with BC female 
stools, fecal microbiota transplants (FMT) containing Eu-
bacterium species (Eubacterium rectale, Eubakterium eli-
gens, Eubakterium ventriosum) or C. aerofaciens reduced 
the growth of syngeneic AT3 BC cells, suggesting that the 
intestinal microbiota can indeed modulate BC immunosur-
veillance [39]. 

In sum, it appears that the intestinal microbiota is al-
tered in advanced BC and that alterations in the microbiota 
may affect BC progression (Figure 1). Of note, chemother-
apy can affect the BC-associated microbiota, shifting it to a 

more favorable composition [39]. Whether this is a conse-
quence of tumor size reduction or vice versa or explains 
(some of) the antineoplastic effect(s) of chemotherapy 
remains to be determined.  
 
Local microbiota 
Bacteria and fungi are locally present in several types of 
cancers (i.e., breast, lung, melanoma, pancreas) as de-
scribed in large-scale studies by Ravid Straussman's group 
[45, 46]. Earlier research identified a discriminant signature 
in the three breast cancer subtypes (HR+ BC, HER2+ BC, 
TNBC), HR+ BC showing the most diverse local microbiome, 
whereas TN was characterized by a high prevalence of 
Fusobacterium nucleatum [47]. Intratumoral microbes may 
favor oncogenesis [48, 49] by several putative mechanisms: 
local genotoxicity by direct DNA damage [50], activation of 

oncogenic pathways (e.g., TLR/ catenin pathway activa-
tion by F. nucleatum in colorectal cancers) [51], promotion 
of immune escape or chronic inflammation [52] or induc-
tion of chemoresistance mechanism (e.g., via induction of 
autophagy in colorectal cancer [53]. However, the litera-
ture on the specific contribution of the local microbiota to 
BC pathogenesis is scarce. Specific intracellular bacteria 
(Lactobacillus, Staphylococcus and Streptococcus) have 
been shown to inhibit the RhoA- ROCK pathway, thereby 
increasing the resistance of BC cells to mechanical stress 
and favoring their metastatic dissemination [54]. In this 
paradigm, eradication of these bacteria by suitable antibi-
otics had no effect on the growth of the primary tumor, 
but did reduce the capacity of BC cells to metastasize [54, 
55]. 

Beyond its direct effects on the oncogenic potential of 
malignant cells, the intratumoral microbiota may modulate 
local immunity through dual effects that either foster an 
immunosuppressive tumor environment or support anti-
cancer immunity [56]. Microbial peptides from intracellular 
bacteria may be presented by the MHC class I or II mole-
cules on the surface of tumor cells, thus offering a target 
for CTL and CD4+ T cells respectively [57]. Moreover, bac-
teria can trigger pattern recognition receptors. For exam-
ple, Bifidobacterium, a bacterial family naturally present in 
the human gut, has been found in malignant tissues to 
activate the innate STING signaling pathway, thereby im-
proving antigen presentation by dendritic cells [58]. A. mu-
ciniphila also activates the STING pathway to enhance the 
secretion of Type 1 IFN and hence reshape the tumor mi-
croenvironment [56]. Whether these findings also apply to 
BC remains to be determined (Figure 1).  

The ultimate conundrum is the source of these intra-
tumoral microbes. A study on canine mammary tumors 
reported the existence of the same species of Bacteroides 
in the tumor microbiota as in the mouth and the gut, sug-
gesting bacterial migration along the intestinal tract and to 
distal malignant tissue via the blood stream [59]. However, 
at this point, other routes (such as ascending bacterial con-
tamination of milk ducts) cannot be excluded. 
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IMPACT OF MICROBIOTA ON THE EFFICACY OF BC 
HORMONE THERAPY 
Bacteria present in the gut have a major impact on the 
enterohepatic circulation of estrogens. Estradiol is conju-
gated in the liver by glucuronyltransferases into estradiol 
glucuronide and excreted via bile into the gut, where it can 
be deconjugated by bacterial β-glucuronidases and then be 
reabsorbed [60]. Bacteria that produce β-glucuronidase 
include Alistipes, Bacteroides, Bifidobacterium, Collinsella, 
Edwardsiella, Faecalibacterium genera, and Lactobacillus 
and Roseburia species [61, 62]. However, there are no sys-
tematic studies on the implication of such bacteria in the 
pathogenesis of HR2+ BC. Of note, specific bacteria (such as 
the betaproteobacterium Denitratisoma sp. strain DHT3) 
can convert estrogens into androgen [63]. Whether such 
bacteria endowed with the conversion of female into male 
sex hormone are contained in the human gut remains to 
be determined. Reportedly, human feces (especially from 
female subjects) contain bacteria such as Peptostreptococ-
cus productus SECO-Mt75m3 and Eggerthella lenta SECO-
Mt75m2, which produce estrogen-like compounds such as 
enterodiol (ED) and enterolactone (EL) [64]. Hence, it can 
be speculated, yet remains to be demonstrated, that the 
abundance of such bacteria affects the development of HR+ 
BC as well as the response of HR+ BC to hormone therapy.  

Long-term estrogen supplementation of mice affects 
the composition of the gut microbiota (with a decrease of 
A. muciniphila), as well as estrogen metabolism (due to a 
reduction in β-glucuronidase activity) in the murine gut, 
suggesting that estrogen inhibition should affect the intes-
tinal microbiota as well [65]. However, at this point, it has 
not been reported that estrogen receptor antagonists and 

aromatase inhibitors would increase the intestinal abun-
dancy of A. muciniphila, which might be expected to have 
favorable effects on anticancer immune responses [40, 44, 
66, 67]. In patients with endocrine-resistant HR+ BC escap-
ing from adjuvant aromatase inhibitor therapy, shifts in the 
fecal microbiota were observed compared to patients who 
continued to respond. In particular, bacteria belonging to 
the Veillonella genus were overabundant in women with 
endocrine-resistant HR+ BC [68]. Of note, Veillonella spe-
cies have been associated with poor prognosis if present in 
the gut of patients treated with CAR-T cells [69] or in the 
tumor microbiota of lung cancer patients [70]. However, its 
causal implication in HR+ BC responses to hormone therapy 
remains elusive. 

 

CONCLUSIONS 
As summarized in this review, HR+ BC is similar to other 
cancers with respect to its broad relationship to pro-
inflammatory circuitries (which are oncogenic, explaining 
the epidemiological association of HR+ BC with obesity), 
immunosurveillance (which limits HR+ BC oncogenesis at 
least in experimental models) and the local and remote 
(mostly intestinal) microbiota. The microbiota may impact 
the pathogenesis of HR+ BC at multiple levels, (i) locally by 
affecting malignant cell-intrinsic properties, (ii) locally by 
modulating the tumor microenvironment, and (iii) systemi-
cally by long-distance effects emanating from the gut mi-
crobiota that can be mediated by metabolic, inflammatory 
and immune circuitries [71]. At this latter level, it appears 
that the intestinal microflora potentially mediates the syn-
thesis of estrogen receptor agonists, destroys estrogens 

FIGURE 1:  Potential mechanisms explaining the effects of the local and intestinal microbiota on hormone receptor-positive breast cancer 
carcinogenesis and sensitivity to hormone therapies. For details consult text. (Parts of the figure were created with Servier Medical Art 
licensed under a Creative Commons Attribution 3.0 unported license). 
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and modulates the enterohepatic circulation of estrogens, 
hence influencing the overall estrogen tonus.  

In this context, it appears that the preponderant 
treatment modality applied to HR+ BC, which consists in 
the administration of estrogen receptor antagonist or that 
of aromatase inhibitors, has profound effects on immune 
cells (which express estrogen receptors), meaning that 
(part of) their therapeutic efficacy may transcend the can-
cer cell-autonomous action of such hormone therapies. 
Indeed, in preclinical models, hormone therapies appear to 
be more efficient in the presence of an intact immune sys-
tem, a hypothesis that is compatible with some epidemio-
logical observations such as the correlation between ther-
apeutic efficacy and a favorable CTL/Treg ratio among TILs 
present in BC. Since the intestinal microbiota plays a major 
role in shaping the inflammatory and immune tonus within 
tumors [72], it can be expected that the composition of the 
microflora as well as its functional state (i.e., eubiosis ver-
sus dysbiosis) should impact the outcome of hormone 
therapy. In addition, it appears plausible, yet remains to be 
demonstrated, that a microbiota-driven increase in estro-
gen levels or the enzymatic destruction of orally adminis-
tered hormone therapies may impact the pharmacology of 
hormone therapy.  

Beyond theoretical considerations, it will be important 
to understand how the local and intestinal microbiota can 
be modified for improving the clinical outcome of HR+ BC 
treatments. Future investigation may lead to the identifica-
tion of specific favorable bacteria that improve the hormo-
nal, metabolic and immune control of HR+ BC. In this, case, 
prebiotics (compounds that expand useful microbes), pro-
biotics (specific microbial species) and postbiotics (the 
products including the metabolites of such microbes) might 
be useful [73]. Similarly, future research might identify 
harmful microbes that should be selectively eliminated by 
antibiotics, lysed by phages or held in check by the host 
immune system, for instance as a result of vaccination 
campaigns [72]. However, it is also possible that, instead of 
individual microbes, systemic properties of the microbial 
ecosystem must be manipulated to improve the homeo-
static control of the diseased tissue [11, 74]. Future re-
search should actively explore these possibilities. 
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