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ABSTRACT For many diseases, and cancer in particular, early diagnosis allows
a wider range of therapies and a better disease management. This has led to
improvements in diagnostic procedures, most often based on tissue biopsies
or blood samples. Other biological fluids have been used to diagnose disease,
and among them saliva offers a number of advantages because it can be
collected non-invasively from large populations at relatively low cost. To
what extent might saliva content reveal the presence of a tumour located at
a distance from the oral cavity and the molecular information obtained from
saliva be used to establish a diagnosis are current questions. This review
focuses primarily on the content of saliva and shows how it potentially offers a
source of diagnosis, possibly at an early stage, for pathologies such as cancers
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INTRODUCTION

The possibility of using biological fluids such as blood, urine,
saliva and other biofluids to diagnose pathologies is a relatively
old idea that has taken on a new lease of life in recent years.
Thanks to a combination of technological advances, the first
major progress was observed in genomics, proteomics and
bioinformatics techniques, now including artificial intelligence,
making it possible to establish observed differences between
analysed samples with greater sensitivity and a higher degree
of confidence. The second is the standardization of sample
collection, processing, and storage, minimizing variations
linked to sample collection and analysis, as well as to inter-
individual variability. Finally, improved knowledge, particularly
in molecular and cellular biology, makes it possible to give
biological meaning to variations between samples.  This
is particularly decisive for the analysis of a particular class
of RNAs, known as non-coding RNAs (ncRNAs). In recent
years, understanding of the role and regulation of ncRNAs has
progressed exponentially, particularly in terms of how ncRNAs
respond to genetic and epigenetic perturbations, especially
in pathological situations [1]. A crucial element in the use
of biological fluids for the discovery of disease-associated
biomarkers is the characterization and understanding of a
mode of intercellular communication based on the exchange
of vesicles between vesicle-secreting cells, called extracellular
vesicles (EVs), and receptor cells within a target tissue [2, 3.
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These EVs can act close to their site of secretion, promoting
signaling in neighboring cells, or circulate in the blood or lymph
to affect distant tissues. Their effect at distance depends on
the concentration of the EVs and their content. A growing
number of examples show that EVs found in biological fluids,
and particularly in saliva, can reflect acute or chronic pathology
located outside a patient’s oral cavity [4]. In this review, we will
describe the potential of saliva as a biological fluid, not only for
the diagnosis of various diseases, but also for the establishment
of possible therapeutic solutions.

EXTRACELLULAR VESICLES AND THEIR CONTENTS

As mentioned above, some of the differences in saliva content
between healthy people and patients with a given pathology
could be due to different concentrations of EVs, themselves
of a different nature in patients. EVs differ in size, physical
properties, mode of biosynthesis and content, which depends
on the secreting cell [56]. EVs are generated from invaginations
of the cell membrane which, following various maturation
processes, form multivesicular bodies containing intraluminal
vesicles [6]. These in turn can be degraded or secreted into the
extracellular space notably as exosomes [7]. The orientation
of transmembrane proteins on the surface of exosomes is
identical to that observed in the cell membrane, albeit with
different steric constraints due to the greater radius of curvature
in exosomes. Other, larger types of EVs can also form from
buds on the cell surface, or from cells undergoing apoptosis,
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generating so-called apoptotic bodies [6]. Over the past
decade, considerable progress has been made in clarifying
the content of the molecules transported by EVs, known as
"cargoes”, and the role of EVs. Cargoes include proteins
such as membrane receptors, key signalling proteins, major
histocompatibility complexes, intracellular trafficking regulators
and various RNA-binding proteins [8]. Remarkably, many
nucleic acids, particularly ncRNAs, are found within EVs, as
are amino acids and metabolites. It is now accepted that the
biogenesis mechanism of EVs can serve to actively capture
and concentrate cargoes through the action of effectors [6, 9].
Conversely, other cargoes can also be passively encapsulated
within EVs.  The secretion of EVs constitutes a genuine
mechanism for the exchange of molecules and the transmission
of signals between a secretory cell and the receptor cell, through
paracrine effects [10]. As mentioned above, the content of EVs
depends on the cell type secreting them, and this content
can be disrupted in stressful or pathological situations such
as cancer [11, 12]. Numerous studies have shown that in
pathological contexts, notably cancers, the rate of secretion of
EVs by tumour cells is higher than in normal cells [13]. EVs in
biological fluids may therefore reflect cell or tissue dysfunction.

To what extent EVs are found in different biological fluids
and how their distribution in these fluids provides specific
answers to their use as a tool for diagnosis are open questions.

SALIVA, ABIOLOGICAL FLUID FOR BIOMARKER
DETECTION

Saliva is a biological fluid secreted by various salivary glands,
which once poured into the oral cavity, is mixed with secretions
from the epithelial cells of the oral wall. It also contains cellular
infiltrates and many micro-organisms, including bacteria and
viruses [14, 15]. It is an abundant saliva secretion, estimated
to a liter per day for a healthy person [16]. Saliva, made
up of 98% water, contains a variety of proteins (mucins,
lactoferrin, histatins, various proteases, immunoglobulins)
involved in protecting the oral cavity and in the initial stages of
digestion [17], as well as growth factors, hormones, cytokines
and metabolites [18]. Proteomic studies have shown that
most proteins are synthesized in the salivary glands [19],
although some are transported from the blood or lymph into
the saliva [20]. Saliva also contains nucleic acids: nuclear
DNA 2V and, above all, many different classes of ncRNA [22].
More than a decade ago, the question was whether saliva
vesicles and their contents originated solely from the salivary
glands, possibly revealing oral pathologies, or whether they
could be derived from cells belonging, for example, to a tumour
(or their microenvironment) located at a distance from the
oral cavity. Numerous studies have now shown that small
ncRNAs found in the saliva of cancer patients are associated
with tumour-derived cancer cells [23]. The question then arose
as to how EVs originating from tumour cells or associated with
tumours find their way into the patient's saliva. The prevailing
idea is that EVs secreted by tumour or tumour-associated cells
reach the salivary glands via the general circulation, or via
the lymph. EVs are then taken up by the acinar cells of the
salivary glands by membrane fusion or by an invagination
mechanism (endocytosis). The salivary glands then secrete
mixed EVs into the saliva, originating from both acinar cells
and EVs derived from the tumour located at a distance from
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the salivary glands [23]. This model explains why ncRNAs
detected in saliva, particularly in pathological situations, will
have a different profile to those found in other biological fluids,
notably blood [24].

For certain pathologies, saliva can therefore serve as a
biomarker of disease. The higher the number of samples, the
more robust the biomarker. The fact that saliva sampling is easy,
non-invasive, easy to handle, inexpensive and can be used on
a large scale of patients [25] opens new prospects not only for
the discovery of biomarkers for the diagnosis of pathologies, but
also for the understanding of the pathologies studied.

DNAIN THE SALIVA

Saliva contains many different types of nucleic acid. Much of
the DNA extracted from saliva comes from bacteria, but mainly
from leukocytes and epithelial cells in the oral cavity [26]. The
proportion of cellular DNA will depend on how the saliva is
collected, influencing the collection of cells in the saliva sample.
Sequenced genomic DNA (gDNA) will provide information on
the patient’s genetic identity but cannot be used to determine
somatic alterations in the cells involved in the disease. In
this sense, gDNA purified from saliva can be substituted for
gDNA purified from blood leukocytes to perform whole genome
sequencing [27] or large-scale analysis of gDNA methylation
profiles [28]. Average telomere length can even be measured
by PCR from saliva samples [29]. Nevertheless, in diagnostic
terms, gDNA from oral cavity cells will not be informative, except
for familial cancers [30], and cancers forming in the upper
aerodigestive tract for which saliva contains cancer cells [31].

In cancer patients, saliva is likely to contain circular DNA
consisting of short DNA sequences wrapped around one or
more nucleosomes [32]. Nevertheless, a significant fraction
of saliva’s extracellular DNA is protected from nuclease action,
suggesting that it is contained within secreted EVs, either by
cells of the oral cavity or, in the case of cancers, by more distal
tumour cells [33]. The origin of extracellular DNA and gDNA-
containing EVs is not fully elucidated. It could come from
apoptotic bodies generated by cells undergoing apoptosis [6].
Studies have shown that nuclear DNA is not found in small,
highly purified EVs (exosomes) [8]. However, in ovarian cancer
patients, it has been shown that 10% of exosomes contain
genomic DNA. Its presence in EVs is thought to be linked to
micronuclei that characterize the genetic instability of cancer
cells [34]. Other mechanisms linked to the genetic instability
of cancer cells may also explain the leakage of gDNA into the
cytoplasm [35]. These results are in line with various studies
which have shown that mutations (KRAS, TP53, EGFR, and
PIK3CA) associated with different types of cancer (pancreas,
breast, lung) could be detected from EVs purified from patient
blood, notably thanks to the use of digital droplet PCR enabling
a region of DNA to be amplified with high sensitivity [36-39].
In saliva, extracellular DNA is present at lower concentrations
than in blood [40]. A better understanding of the origin of
the extracellular DNA present in saliva is needed to consider
the enrichment of EVs containing tumour DNA, and to evaluate
the potential of saliva for the detection of cancer-associated
mutations.

There are also stress or pathological conditions that cause
mitochondrial DNA [41] to leak into the cytoplasm, inducing
inflammatory-type responses initiated by the recognition of
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DNA found in the cytoplasm by specific sensors [42]. Under
these conditions, cytoplasmic mitochondrial DNA can be
incorporated into EVs, contributing to the propagation of
the inflammatory response [43]. It has been shown that
mitochondrial DNA amplicons can be directly amplified and
quantified by gRT-PCR from saliva independently of the cellular
content of the saliva [44]. In head and neck cancers, the
normalized amount of extracellular mitochondrial DNA present
in saliva correlated with poorer patient survival indicating that
the level of extracellular mitochondrial DNA in saliva can be
used as a robust predictor of overall patient survival [45]. It will
be of interest to study whether quantification of mitochondrial
DNA, and possibly mitochondrial gene sequence, established
from saliva constitutes a novel biomarker for cancers [46].

miRNAs IN SALIVA

As aforementioned, saliva can reflect systemic processes,
mainly through the EVs contained in it. Like other EVs, salivary
EVs contain a variable proportion of ncRNAs corresponding to
RNA molecules that are not translated into proteins. NncRNAs
include small RNAs of around 22 nucleotides (nt) called
microRNAs (miRNAs), long non-coding RNAs (IncRNAs) whose
size exceeds 200 nt, and a particular class of Piwi protein-
interacting RNAs (piRNAs) notably involved in the repression of
transposable elements [4, 33]. These NncCRNAs are accompanied
by single-stranded circular RNAs (circRNAs) produced by mRNA
by back-splicing of the upstream 5’ splice donor site with the
upstream 3’splice acceptor [47]. CircRNAs, whose abundance
varies with tissue and age, are particularly stable and have been
detected in plasma and saliva [47]. They act as miRNA sponges,
and as such represent a new source of biomarkers, notably in
many cancers [48].

miRNAs were first identified in the C. elegans worm [49,
50]and then in vertebrates [51]. Numerous studies have since
clarified the mode of biosynthesis and mechanism of action
of miRNAs [52]. They are synthesized as precursors by RNA
polymerase Il and undergo an initial maturation step in the
nucleus, generating miRNAs of around 70 nt in size, which
are then exported to the cytoplasm [52]. In the cytoplasm,
these stem-loop MiRNAs undergo the action of the DICER
endoribonuclease, producing double-stranded RNA duplexes
of around 22 nucleotides. One strand of the miRNA duplex
(the other strand is degraded) forms a complex with the
Argonaute protein (AGO), called RISC, whose action will switch
off the expression of genes with sequences complementary to
miRNA [53], either by destabilizing the RNA targeted by the
miRNA, or by inhibiting its translation, depending on the degree
of homology of the miRNA with its target RNA [54, 55].

It has been established that most mammalian messenger
RNAs (MRNAs) can be targets for miRNAs [56]. Over 2,600
different miRNAs have been identified, of which more than 1000
are annotated in databases [57]. However, the number of
protein-coding genes whose expression is effectively regulated
by miRNAs remains to be determined. It is estimated that 60% of
coding genes are regulated by miRNAs.

Although miRNAs found in biofluids are not necessarily
EV-associated, it is now recognized that miRNAs secreted
into EVs are key players in EV-mediated intercellular
communication [58]. It should be noted that the population of
miRNAs released into EVs is distinct from the cellular population
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by the presence of export sequences (Exomotifs) favoring their
concentration in EVs [59]. miRNAs can also be secreted into
biological fluids by binding to RNA-affine proteins such as Ago2
and lipoproteins [60]. Extracellular miRNAs have been found
in all biological fluids, including saliva [33]. miRNAs are highly
stable in biological fluids, both because of their structure and
because they are released from EVs [61]. A large number of
studies have exploited the use of blood miRNAs as biomarkers
of disease [62], but fewer have explored the utility of salivary
miRNAs. Nevertheless, recent studies indicate that biomarkers
based on salivary EVs could predict several pathologies other
than those of the oral cavity [63].

SALIVARY miRNAs: BIOMARKERS OF CANCER

Although saliva has advantages over blood as a biological
fluid for diagnosis, variations in its potential contamination and
composition have been obstacles to its use. This limitation
can be partially overcome by the standardization of samples
and by the purification of EVs, which constitutes a step in the
purification and enrichment of ncRNA contained in saliva [47].
In addition to head and neck cancers, miRNAs from salivary EVs
have recently been shown to be biomarkers for oesophageal
cancers [64], colorectal cancers [65, 66], lung carcinomas [67,
68], hepatocarcinomas [69] and as potential biomarkers for
pancreatic cancer [70, 71]. Salivary miRNAs are also thought
to be biomarkers for ovarian cancer, for which several miRNAs
purified from patient blood have been associated with the
proliferation and migration of epithelial cancer cells [72-74].

Various protocols have now been developed to purify
EVs from saliva, including exosomes, opening new horizons
for the use of saliva in diagnosis. In particular, salivary EVs
can be concentrated by immuno-purification using antibodies
directed against four-domain transmembrane proteins called
tetraspanins (CD9, CD63, CD81) found on the surface of most
exosomes [7]. However, there are now several evidences in
the EV-field that there may be a significant population of EVs
that are negative for those markers [75]. Mass spectrometry
studies have also shown that exosomes derived from pancreatic
tumours may contain CD 151, another tetraspanin [76], making
it possible to enrich specific exosomes associated with a
particular type of cancer from saliva. Similarly, ovarian cancers
overexpress a family of proteins called syndecans [77, 78]
consisting of an extracellular domain, a transmembrane
domain and a cytoplasmic domain which communicate with
tetraspanins to regulate vesicular trafficking and the activity
of associated receptors [79]. It is conceivable that syndecans
overexpressed in ovarian cancer could escape proteolytic
cleavage of their extracellular domain, enabling the purification
of specific exosomes with appropriate antibodies to facilitate
diagnosis.

COMPLEXITY OF miRNA EXPRESSION REGULATION

While the mechanism of miRNA-mediated repression of gene
expression has been extensively studied, the mechanisms
leading to changes in miRNA expression, particularly in cancer
cells, are much less well understood [80]. mMIRNAs can be
classified into intragenic and intergenic miRNAs. Most of the
miRNAs deregulated in cancer (onco-miRNAs) are integrated
into the introns of host genes. Using multidimensional omics
databases to simultaneously study the expression of intragenic
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miRNAs and their host genes, it has been shown that, in
several types of cancer, the expression of onco-miRNAs is
often correlated with that of related host genes [81]. It is
reasonable to assume that this co-regulation may be linked
to epigenetic modifications of either the host gene promoter
or the microRNA promoter [82]. There are numerous examples
showing that, in cancer, the expression of onco-miRNAs can
be derepressed via hypomethylation of the CpG islands of
their promoter, while conversely, the expression of miRNAs
with a tumour suppressor role is inhibited via hypermethylation
of the CpG islands [83]. Nevertheless, analysis of the links
between onco-miRNAs and host genes is still far from complete.
Nevertheless, the analysis of the links between DNA methylation
and miRNA expression remains complicated because miRNAs,
themselves regulated by epigenetic modifications, control
the expression of genes encoding key DNA methylation
factors, thus creating feedback loops [83]. Moreover, it
has recently been shown that methylation of host gene
DNA regions bordering the miRNA facilitates ribonuclease-
mediated maturation of pre-miRNAs [84]. This highlights the
complexity of mMiRNA expression regulation, which depends on
transcriptional, epigenetic and post-transcriptional mechanisms
involved in miRNA maturation and stability. This underscores
the difficulty of establishing causal links between miRNA
expression variations. Nevertheless, the co-regulation of several
miRNAs may be indicative of an epigenetic modification with a
causal link to a given cancer.

miRNAs: FROM MECHANISMS TO THERAPEUTIC
SOLUTIONS

Beyond the diagnostic use of the signatures constituted
by the expression profile of salivary miRNAs, the aberrant
expression of miRNAs associated with cancers can be used
to glimpse therapeutic solutions [85]. As the functions of
miRNAs are essentially defined by the identity of their targets,
the action of miRNAs must be considered in the context of
gene regulatory networks [86]. In some cases, variation
in the expression of one or more MiIRNAsS promotes tumour
transformation by influencing the expression of a key mediator
of a signalling pathway [87] or a tumour suppressor [88]. In
other cases, a single mMiRNA may promote tumour development
by altering anti-tumour immunity [85, 89lor by stimulating
angiogenesis [90]. Numerous strategies based on the inhibition
of mIRNA expression, or conversely on their restoration,
have been envisioned [91]. Recent progress, linked to the
development of RNA vaccines, suggests that the introduction of
miRNAs could be exploited therapeutically [92]. In cases where
cancer is accompanied by the extinction of expression of a key
mMiRNA, it is conceivable to introduce, using lipid nanoparticles,
synthetic double-stranded miRNAs (mimicking the miRNA)
capable of forming a complex with RISC and targeting the
mMRNA encoding the overexpressed oncogene. Very recently,
a new approach called RiboStrike was developed to identify
molecules capable of inhibiting the activity of miRNA-21, which
plays a key role in breast cancer development [93]. This screen,
based on different datasets and using cell-based screens and
artificial intelligence, identified from millions of molecules three
compounds with miRNA-21 inhibitory activity whose efficacy
was validated in mouse models of breast cancer [93]. These
results demonstrate the power of new therapeutic approaches
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targeting miRNA activity.

IncRNAs AND piRNAs IN SALIVA: NOVEL
BIOMARKERS?

Other non-coding RNAs, apart from miRNAs, have been
identified in saliva, broadening the potential spectrum of
biomarkers [47]. Among these, piRNAs, which range in size
from 26 to 31 nucleotides [94], associate after maturation
with Piwi proteins to form piRISC complexes involved in target
gene silencing through transcriptional and post-transcriptional
mechanisms [95]. piRNAs are predominantly expressed in
germ lines to protect their genome against mobilization of
transposable elements by repressing transposon-encoded
proteins [96]. Their expression is controlled by genetic and
epigenetic mechanisms at specific loci, which restrict their
expression mainly to germ lines [97]. Nevertheless, piRNAs
are also expressed in somatic cells, particularly in tumours of
different cancer types, in which their expression is correlated
with aberrant DNA methylation profiles [98]. As such, aberrant
expression of piRNAs in cancers can also serve as a biomarker
fordiagnosis, and potentially some piRNAs could be targeted for
therapeutic purposes [99, 100]. The most abundant piRNAs are
found in all biological fluids and circulate mainly in EVs [47]. The
concentration of specific piRNAs is particularly high in gastric,
colorectal, renal, and prostate cancers [101]. Each fluid has a
specific piRNA signature indicating that cohorts can potentially
be identified based on several classes of small nNcCRNAs.

LncRNAs are another class of RNAs whose expression is
deregulated in cancers [1], yet their concentration is lower in
saliva. They are transcribed, modified, and matured in the cell
using the canonical mechanisms of mRNA maturation [102].
They act on gene transcription in multiple ways, notably
by regulating the recruitment of factors associated with
transcription, or by directly or indirectly modifying the state of
chromatin or the architecture of the nucleus [103]. They also act
at the post-transcriptional level through multiple mechanisms,
including regulating alternative splicing of mRNAs [104],
serving as a platform to create molecular scaffolds [105]
or acting as sponges to titrate miRNAs [106]. They can
also take part in phase separation processes to concentrate
macromolecular machineries at their site of action [107].

Certain INCRNAs, such as HOTAIR, MALAT1, NEAT1, H19
and XIST1 [101] are found deregulated in multiple cancers and
are prognostic markers [108-115]. The H19 IncRNA, located
on the H19 locus close to the IGF2 (Insulin-like growth factor
2) gene, is particularly interesting since this locus is subject to
imprinting: the H19 InCRNA is expressed by the maternal allele,
while IGF2 s transcribed by the paternal allele [116]. Expression
of the two genes is closely coordinated and controlled by
methylation of an intergenic region located between the two
genes [117]. H19 IncRNA has been shown to be deregulated
in gynecological cancers and also in endometriosis, suggesting
a common etiology between these cancers and endometriosis.
The presence of IncRNAs in saliva has not been explored
in detail as in the case of miRNAs, notably because of their
lower abundance and stability. In saliva, HOTAIR is found
overexpressed in pancreatic cancers [118], while MALAT1 is a
salivary biomarker of oral epithelial lining cancer [119]. Further
studies are needed to determine whether INCRNAs in saliva can
be biomarkers of cancer or other pathologies.
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USE OF SALIVA IN THE DIAGNOSIS OF
ENDOMETRIOSIS

Endometriosis is a systemic, heterogeneous disease
characterized by the presence of endometrial like tissue
outside the uterus, causing intense pelvic pain and a high
risk of infertility [120]. Although this disease affects 5-10%
of women of reproductive age, it is not diagnosed early,
complicating the implementation of treatments, which are
themselves limited. Endometriosis is classified into three
subtypes: superficial peritoneal endometriosis, deep infiltrating
endometriosis and endometrial cyst of the ovary [121]. It causes
systemic inflammation with consequences extending beyond
the areas infiltrated by transformed endometrial cells [122].
Various models have been proposed to explain the ectopic
localization of endometrial cells, which must acquire new
properties to migrate and establish themselves in a new
environment [123]. Endometriosis was initially associated
with retrograde menstruation [124], but this condition is
clearly not sufficient [122, 123]. It is generally proposed that
during retrograde menstruation, endometrial stem cells, along
with other cells, are deposited on the peritoneum, ovaries
and fallopian tubes [125]. Genetic or epigenetic alterations
in these stem cells [126, 127], combined with hormonal
stimulation and environmental cues, contribute to their survival,
proliferation, altered differentiation and adhesion to their new
environment [128]. Cells establish new interactions enabling
the growth of endometriosis lesions [128]. The proliferation
of precursor cells and their differentiation in endometriosis
depots is favored by an imbalance in hormonal regulation
associated with elevated estrogen expression [120-122] and
various mechanisms affecting the action of progesterone,
which normally inhibits estrogen-dependent proliferation of
endometrial cells, induces endometrial decidualization and
acts against inflammation [129]. These mechanisms may be
genetic or epigenetic [130, 131]. Several environmental signals
may contribute to the physiopathology of endometriosis. For
example, periodic and repeated bleeding drains erythrocytes
whose macrophage-mediated lysis is likely to release heme
and iron from hemoglobin degradation into the peritoneal
environment [132, 133] thereby inducing the formation of
reactive oxygen species leading to oxidative damage of
macromolecules contributing to chronic inflammation [134].
Notably, local excess of iron can induce ferroptosis, a form of
cell death associated with lipid peroxidation [135]. Like cancer
cells, it is suggested that stromal cells in endometriosis lesions
have increased resistance to ferroptosis [136, 1371].

All this reveals the complexity of the mechanisms behind
endometriosis lesions. Very recently, single-cell experiments
allowing to assess cell types in normal endometrium [138, 139]
and endometriosis lesions [140, 141] have shed new light
on this pathology. These studies provide an insight into
the specific microenvironment associated with endometrial
lesions, consisting of epithelial and stromal cells, infiltrates
of immune cells, fibroblasts, vascular and mesothelial cells,
illustrating the fact that endometrial lesions are often fibrotic
with increased angiogenic capacity [140, 141]. They also
reveal variations in gene expression between epithelial
and stromal cells in endometriosis lesions and those of the
normal endometrium [140, 141]. Interestingly, stromal cells
in endometriosis lesions are more responsive to estrogen
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than stromal cells in normal endometrium, whereas this
difference has not been observed in epithelial cells [141].
Moreover, for each cell type within the lesions, specific subtypes
can be identified, with proportions varying between normal
endometrium and endometriosis lesions [140, 141].  For
example, the relative abundance of monocyte and macrophage
subpopulations and natural killer (NK) subtypes differs between
normal endometrium and endometrial lesions, which may
explain the tolerance of endometriosis lesions to the action of
the immune system and the inflammatory responses associated
with endometriosis [140, 141]. Similarly, ectopic endometrial
deposits show distinct subpopulations of venous endothelial
cells and myofibroblasts [140].

It is quite clear that in many respects, endometriosis
lesions have characteristics like those of tumours, and as such
present biomarkers detectable in biological fluids. In normal
endometrial function, stromal cells secrete EVs that contain
multiple cargos including miRNA that mediate intercellular
communication within the endometrium and condition
physiological changes in the uterine environment [142]. Not
surprisingly, EVs, including exosomes, have been purified from
plasma and peritoneal fluid in endometriosis patients and
healthy controls that reveal unique EV/miRNA signatures in
endometriosis patients [143]. Variations in miRNA expression
have since been observed in the endometrial tissues and
various biological fluids of women with endometriosis [144].
Several reviews summarize the function of mIRNAS that
are differentially regulated in samples from patients with
endometriosis [145, 146). Although the biological role of certain
miRNAs in endometriosis can be addressed [147], the question
arises as to their use in diagnosis and as therapeutic targets.

A multicentric study with intermediate validation involving
a cohort of 200 patients with confirmed endometriosis was
conducted in the form of a collaboration between several
endometriosis reference centers in France and the Core
Facility (iGenSeq) of the Brain and Spinal Cord Institute (ICM,
Paris) [148]. Using deep-sequencing and machine-based
learning algorithm [149] from saliva samples, this study
identified a panel of 109 mMIRNAs constituting a signature
with a positive predictive value of 95.1% and a negative
predictive value of 86.7% [146]. This study has led to the
commercialization of a saliva test whose large-scale exploitation
could constitute a decisive advance in the diagnosis of
endometriosis(https://ziwig.com/endometriose/)‘ Several
concerns have been expressed regarding the large-scale
use of this test for diagnostic purposes, for example, the
consequences of a positive test in an asymptomatic patient,
or conversely, a negative test in a symptomatic patient
presenting a highly suggestive clinical picture [150]. Clearly,
the test is not intended for asymptomatic patients, and has
a low false-negative rate compared with other diagnostic
methods [151].  Another interesting question concerns the
acceleration of referral of patients with a positive test to
specialized services [150]. The answer to this question is
that a positive test could immediately authorize second-line
treatment by primary care physicians (midwives, general
physicians, and gynecologists), thereby reducing the need
for referral to an expert center and holistic patient management.
Anotherissue is the applicability of the test outside France [150].
Rather, the miRNA signature should reflect the consequence
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of endometriosis depots, irrespective of polymorphisms linked
to different ethnicities. Nevertheless, the question is legitimate
and deserves attention.

CONCLUSIONS

Saliva is a liquid biopsy with many diagnostic potentialities
and advantages. [t is easy to collect and store, non-invasive,
and contains a large number of molecules, including many
miRNAs that have been validated as biomarkers in numerous
pathologies. Nevertheless, beyond endometriosis, salivary
diagnostics is still in its infancy, and many challenges remain
to be overcome, notably to increase the concentration and
specificity of biomarker molecules and the sensitivity of
molecule detection. Moreover, there is a need to integrate and
cross-reference saliva data from patients with different cancers
on a large scale, combine several salivary biomarkers, and
reduce the heterogeneity associated with the study of the same
disease, which sometimes leads to disparate results for the same
type of cancer from saliva samples. To increase specificity, the
researchers set out to analyze the biomarkers contained in saliva
EVs. A growing body of evidence indicates that EVs associated
with cancer cells have specific characteristics, and that these
EVs are found in saliva. Clinically applicable purification of EVs
may represent a decisive step forward in the use of saliva for
diagnosis. Finally, beyond diagnosis, the greatest challenge
remains to transform omics data from saliva into biological
information to understand the mechanisms of pathological
situations and identify targets for therapeutic purposes.
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