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ABSTRACT  The obese brain is stressed and inflamed. This is mainly at the lev-
el of neurons and glial cells in the hypothalamus: a brain region where the 
adipokine leptin acts to control feeding and body weight. Relieving hypotha-
lamic neuronal endoplasmic reticulum (ER) stress with the natural small mol-
ecule drugs celastrol or withaferin-A reverses the leptin resistance commen-
surate with obesity, producing a degree of weight loss found only with bari-
atric surgery. Here, recent evidence from rodent models of vertical sleeve 
gastrectomy (VSG) is brought to the fore which suggests that this particular 
bariatric surgical procedure may work in a similar fashion to celastrol and 
withaferin-A alongside remedying hypothalamic inflammation and gliosis. 
Thus, restoring and preserving healthy hypothalamic neuronal and glial cell 
function, be it by pharmacological or surgical means, ensures a negative ener-
gy balance in an environment constructed to promote a one - possibly 
through re-establishing communication between adipose tissue and the brain. 

 
Could de-stressing the brain be the solution for long-term 
weight loss? 
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INTRODUCTION 
One just needs to take a look at a typical vending machine 
(often found in hospitals) to appreciate what has happened 
to our food and drink. The relatively sudden widespread 
ease of access to energy-dense meals, combined with a 

generally less active way of life and superimposed on a 
susceptible genetic background has fueled a steep rise in 
global obesity prevalence. This in turn has directly contrib-
uted to the increased incidence of chronic debilitating con-
ditions such as type II diabetes, atherosclerosis, cardiovas-
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Abbreviations: 
eIF2a – elongation initiation factor 2 
alpha, 
ER – endoplasmic reticulum, 
FXR – farnesoid X receptor,  
GABA – gamma amino butyric acid, 
GLP-1 – glucagon-like peptide 1, 
IKK-β – inhibitor of kappa beta kinase 
beta, 
IL – interleukin, 
HSF1 – heat shock factor 1, 
NF-Кβ – necrosis factor kappa beta, 
PERK – protein kinase R (PKR)-like ER 
kinase, 
PTP1B – protein tyrosine phosphatase 1B, 
PGC-1α – peroxisome proliferator-
activated receptor gamma coactivator 1-
alpha, 
SOCS3 – suppressor of cytokine signaling 
3, 
TGR5 – Takeda G-protein 5 receptor, 
TLR4 – toll-like receptor 4, 
TNF-α – tumor necrosis factor alpha, 
UCP1 – uncoupling protein 1, 
VSG – vertical sleeve gastrectomy, 
vWAT – visceral white adipose tissue. 
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cular disease and certain cancers which are all major caus-
es of premature death. 
 

ADIPOSE TISSUE AND INTESTINAL INFLAMMATION AS 
A CAUSE OF INSULIN RESISTANCE  
Early efforts to disentangle the close relationship between 
obesity and type II diabetes focused on the pro-
inflammatory cytokine tumor necrosis factor alpha (TNF-α) 
in visceral white adipose tissue (vWAT) [1]. A pronounced 
increase was found in various rodent models of obesity [1] 
and this marked the beginning of a powerful narrative in 
which increased visceral adiposity causes a state of chronic, 
low-grade systemic inflammation involving both the adap-
tive and innate immune systems. Subsequent rodent stud-
ies revealed in reverse chronological order that during 
obesity progression, antigen-presenting and IgG-releasing 
B cells are the first to arrive in vWAT, possibly attracted by 
chemokines released from swelling adipocytes sensed by 
the mechanoreceptor transient receptor potential vanilloid 
4 (TRPV4) [2], followed by the recruitment of cytotoxic 
CD8+ T cells and then by M2 macrophages [3, 4 ,5]. These 
white blood cells all release a plethora of pro-inflammatory 
cytokines including macrophage-derived TNF-α [6] that 
interfere with insulin receptor signaling both locally in 
vWAT and distally in peripheral tissues such as the liver and 
skeletal muscle [7] (Figure 1). 

It is now increasingly recognized that a complex im-
mune response also takes hold in the gut from chronic 
consumption of a high-fat diet due to shifts in resident 
microbiota species. This engenders the downregulation of 
regulatory T cells (Treg ) and innate lymphoid cells (ILCs), 
which normally secrete the anti-inflammatory/intestinal 
barrier-protective cytokines interleukin 10 (IL-10) and IL-22, 
respectively, with the concomitant upregulation of cytotox-

ic CD8+ and Th1 T cells, which secrete the pro-
inflammatory and intestinal barrier-disrupting cytokine 
interferon gamma (IFN-γ) [8]. The loss of gut barrier integ-
rity itself in obesity results in systemic endotoxemia which 
too contributes to vWAT macrophage activation, possibly 
through bacterially-derived lipopolysaccharide (LPS) acting 
on local toll-like receptor 4 (TLR4) [8, 9]. Thus, we now 
know a great deal about the molecular and cellular under-
pinnings of obesity-induced insulin resistance, although 
this has yet to be translated into an effective immune-
based therapy for type II diabetes in humans. 

 

HYPOTHALAMIC INFLAMMATION AS A CAUSE OF 
LEPTIN RESISTANCE 
At about the same time that inflammation in the vWAT of 
severely obese and diabetic ob/ob mice was discovered [1], 
the ob gene encoding the adipokine leptin was itself cloned 
[10]. This generated considerable excitement about the 
prospects of a new and more effective obesity pharma-
cotherapy. However, it was soon realized that individuals 
with obesity are refractory to the appetite suppressing and 
weight lowering effects of exogenous leptin treatment [11]. 
Analogous to insulin resistance, inflammatory processes in 
the brain, specifically in hypothalamic neurons, would pro-
vide a link between obesity and the relatively newly coined 
term leptin resistance [12]. Furthermore, hypothalamic 
neuronal endoplasmic reticulum (ER) stress was also 
shown to develop upon chronic high-fat food consumption 
in mice, being both a cause and a consequence of pro-
inflammatory inhibitor of kappa beta kinase beta (IKK-β) 
signaling [12]. That acute brain overload of the saturated 
fatty acid oleate was sufficient to increase hypothalamic 
necrosis factor kappa beta (NF-Кβ) transcriptional activity 
supported the concept that high-fat feeding first promotes 

FIGURE 1: Molecular and cellular processes linking obesity with systemic insulin resistance. Swelling (hyperplasic) visceral adipocytes in 
obesity have hyperactivated TRPV4 which leads to changes in gene expression (through extracellular related kinase 1/2 signaling) including 
an increase in chemokine production. This sets into motion a sequence of molecular and cellular events ultimately leading to insulin re-
sistance in hepatocytes and myocytes in part through inhibitory serine 120 and serine 210 phosphorylation of insulin receptor substrate 1 
in these cells by TNF-α. CXCL1 - chemokine (C-X-C motif) ligand 1, IFN-gamma – interferon gamma, MCP-1 - monocyte chemoattractant 
protein 1, TNFα – tumor necrosis factor alpha, TRPV4 - transient receptor potential vanilloid 4. 
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hypothalamic neuronal inflammation and ER stress, fol-
lowed by leptin resistance. Consequently, the rise in circu-
lating leptin levels as fat mass increases fails to act as a 
negative feedback signal to maintain a stable body weight. 
Contrary to what might be expected however, ER stress 
does not affect leptin receptor folding in the ER and traf-
ficking to the plasma membrane [13]. While a unifying 
mechanism for hypothalamic inflammation, ER stress and 
diminished leptin receptor signaling in obesity is still miss-
ing, the increased expression of protein tyrosine phospha-
tase 1B (PTP1B) caused by NF-Кβ is a likely candidate [14]. 
This is because beyond the established inhibitory role of 
PTP1B in dephosphorylating the leptin receptor effector 
protein janus kinase 2 (JAK2) at the cell membrane [15], it 
also potentiates the inositol requiring enzyme 1 (IRE1) arm 
of the ER stress response through its phosphatase activity 
at the ER [16] (Figure 2A). Additionally/alternatively, NF-Кβ 
could increase suppressor of cytokine signaling 3 (SOCS3) 
[12] and decrease mitofusion 2 [17] expression to directly 
interfere with leptin receptor signaling [18] and cause hy-
pothalamic ER stress [19], respectively. Also, through the 
protein kinase R (PKR)-like ER kinase (PERK) and eukaryotic 
elongation initiation factor 2 alpha (eIF2-α) arm of the ER 
stress response, a more stable SOCS3 isoform is produced 
by alternative translation which would serve to further 
exacerbate leptin resistance [20] (Figure 2B). 

The brain's support and immune cells would then be 
added to the mix when it was shown that hypothalamic 
astrocytes and microglia become activated within days 
after placing rats and mice on a high-fat diet [21]. Subse-
quent and prior studies suggested that elevated circulating 
saturated fatty acids themselves act as pro-inflammatory 
signaling molecules on hypothalamic neurons and micro-
glia through TLR4 [22-24]. In contrast, astrocytes appear to 
be activated by saturated fatty acids through a bystander 
effect [22, 24]. Contributions of IKK-β in hypothalamic neu-
rons [12] and microglia [25] to promoting leptin resistance 
and obesity are now clear. Furthermore, hypothalamic 
microglial IKK-β signaling promotes the recruitment of cir-
culating CD169+ monocytes into the hypothalamus, which 
then adopt a microglia-like phenotype to further aggravate 
inflammation and perpetuate leptin resistance [25]. This, 
although controversial [26], could be mediated in part 
through the release of the chemokine fractalkine from 
hypothalamic neurons consequential to receiving TNF-α 
from neighboring glial cells [27]. Interestingly, IKK-β signal-
ing in hypothalamic astrocytes seems to serve a different 
kind of function by shortening their fine processes in the 
face of a high-fat diet leading to reduced gamma amino 
butyric acid (GABA) reuptake from the extra-synaptic space 
[28]. As a result, GABAB receptors are activated in nearby 
neurons decreasing their production of anorexigenic brain-
derived neurotrophic factor (BDNF) which ultimately caus-
es hyperphagia and obesity [28, 29] Thus, the hypothalam-
ic molecular and cellular perturbations in response to 
chronic high-fat diet consumption are multifaceted, involv-
ing a complex array of signaling molecules and cell types 
originating both peripherally and centrally which act in 

tandem to disrupt whole-body energy balance regulation 
(Figure 3). 

 

HYPOTHALAMIC ER STRESS RELIEVERS ARE POTENT 
WEIGHT LOSS COMPOUNDS 
Because of the pivotal role hypothalamic ER stress plays in 
leptin resistance and obesity development [12, 13, 19, 30], 
a screen was performed to identify small molecules which 
might promote weight loss through its amelioration [31]. 
By comparing the mouse hypothalamic transcriptomic re-
sponse to obesity and ER stress-relieving chemical chaper-
ones with that of human cell lines treated with a panel of 
FDA-approved drugs and other bioactive compounds [32], 
the thunder god vine root extract celastrol emerged as one 
that caused the most similar absolute changes. Next, in a 
three week feeding study performed on high-fat diet-
induced obese mice, once daily intraperitoneal celastrol 
injections produced a striking 30% weight loss largely 
through reduced food intake. This is far greater than the 5-
10% typically observed with currently prescribed obesity 
medications such as the 5 hydroxytryptamine 2C (5-HT2C) 
receptor agonist lorcaserin or the glucagon-like peptide 1 
(GLP-1) analogue liraglutide and approaches that found 
with bariatric surgeries such as vertical sleeve gastrectomy 
(VSG) and Roux-en-Y gastric bypass (RYGB). That weight 
loss did not occur in leptin-deficient ob/ob or leptin recep-
tor-deficient db/db mice treated with celastrol provided 
strong evidence that it acts as an endogenous leptin sensi-
tizer. Accordingly, hypothalamic leptin receptor signaling 
was enhanced in wild-type mice after celastrol treatment 
alongside reduced ER stress although experiments with 
celastrol administered to mice lacking functional leptin 
receptors specifically in various nuclei of the hypothalamus 
[33] still need to be performed to draw definitive conclu-
sions. Celastrol also impressively prevented weight gain in 
mice placed on a high-fat diet for a year and was well tol-
erated.  

Motivated by this success, the same group of research-
ers went on to search for compounds which produce a 
similar gene expression profile as celastrol in mouse em-
bryonic fibroblasts [34]. The winter cherry plant extract 
withaferin-A emerged as the best hit. Comparable to celas-
trol, withaferin-A produced approximately 20% weight loss 
in high-fat diet-induced obese mice in a three week feeding 
study largely by reducing food intake. Again, withaferin-A 
was minimally effective in ob/ob and db/db mice and rein-
stated the appetite suppressing effects of exogenous leptin 
treatment in otherwise leptin resistant, high-fat diet-
induced obese mice. Finally, as with celastrol, hypothalam-
ic leptin receptor signaling was enhanced and ER stress was 
reduced by withaferin-A. Notably, precisely how celastrol 
and withaferin A reverse hypothalamic ER stress in obesity 
remains unknown. For celastrol at least, this may be from 
direct inhibition of IKK-β catalytic activity through targeting 
cysteine 179 in the activation loop [35] and/or non-
competitive inhibition of PTP1B [36]. Interestingly, unlike 
celastrol, withaferin-A does not inhibit PTP1B catalytic ac-
tivity [36] which may explain why the former is the superi-
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or weight loss compound. It is also still unclear what effects 
both these molecules have on hypothalamic glial cells.  

In addition to its central mode of action in suppressing 
energy (food) intake, celastrol has also been proposed to 
promote a negative energy balance by increasing energy 
expenditure through stimulating adipose tissue thermo-

genesis [37]. This is thought to be from the stabilizing ef-
fect of celastrol on the protein-protein interaction be-
tween heat shock factor 1 (HSF1) and peroxisome prolifer-
ator-activated receptor gamma coactivator 1-alpha (PGC-
1α), two transcription factors that induce a thermogenic 
gene expression program in adipocytes by binding to the 

FIGURE 2: Proposed intracellular 
signaling cascades liking inflamma-
tion, ER stress and hypothalamic 
neuronal leptin resistance in obesi-
ty. (A) Through the dual phosphatase 
action of PTP1B at the ER (stimulato-
ry on IRE1) and cell membrane (in-
hibitory on JAK2) downstream of 
TNF-α receptor activation, hypotha-
lamic neuronal leptin receptor sig-
naling may be blunted contributing 
to increased food intake and obesity. 
(B) Similarly, through the dual action 
of NF-KB of increasing Socs3 tran-
scription and decreasing Mfn2 tran-
scription, hypothalamic neuronal 
leptin receptor signaling may be 
blunted contributing to increased 
food intake and obesity. This would 
be through decreased mitochondrial 
MFN2 leading to reduced ER-
mitochondrial contacts thereby caus-
ing ER stress. The PERK-eIF2α arm of 
this response mediates alternative 
translation of Socs3 mRNA of a more 
stable SOCS3 variant, which lacks an 
amino terminus tail containing a 
lysine residue that is normally ubiq-
uitinated sending the full-length 
SOCS3 to the proteasome for degra-
dation. eIF2a - elongation initiation 
factor 2 alpha, IKK-beta -  inhibitor 
of kappa beta kinase beta, IRE1 -  
inositol requiring enzyme 1, JAK2 - 
janus kinase 2, Mfn2 - Mitofusin-2, 
NK-κB - necrosis factor kappa beta, 
ObR – leptin receptor, PERK - protein 
kinase R (PKR)-like ER kinase, PTP1B -  
protein tyrosine phosphatase 1B, 
Socs3 - suppressor of cytokine signal-
ing 3, TNFR -  tumor necrosis factor 
receptor. 
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Pgc1α promoter [37]. Indeed, normal weight mice placed 
on a high-fat diet for two weeks and treated with low dos-
es of celastrol were protected from weight gain associated 
with increased energy expenditure but no reductions in 
food intake [37]. Furthermore, the marked upregulation of 
thermogenic genes in adipose tissue caused by celastrol 
was not seen in HSF1-deficient mice. This peripheral mode 
of action for celastrol was however not supported by sub-
sequent findings from mice deficient in uncoupling protein 
1 (UCP1), the principal thermogenic effector in adipose 
tissue [38]. It is nevertheless still possible that UCP1-
independent thermogenesis contributes to celastrol’s ef-
fects on body weight. These issues notwithstanding, there 
is genuine hope that natural, safe and effective obesity 
treatments are in the horizon. However, the effects of both 
celastrol and withaferin-A need to be evaluated in human 
individuals with obesity first before metabolic researchers 
will need to hang up their lab coats. 

 

VSG RELIEVES HYPOTHALAMIC INFLAMMATION, 
GLIOSIS, AND ER STRESS 
If the pharmacological and surgical forms of obesity treat-
ment described above cause comparable magnitudes of 
weight loss, then it can be argued that they both have simi-
lar mechanisms of action. Indeed, recent studies on rats 
and mice in the context of obesity-associated infertility and 
hypertension have shown that VSG reduces hypothalamic 
inflammation [39, 40], gliosis [39], and ER stress [40]. In-
terestingly, there is also evidence from mice [41, 42], rats, 
[43] and humans [44] that like celastrol, VSG induces a 
thermogenic program in adipocytes although the function-
al relevance of this remains unclear.  

In the study of Xiang et al. [39], Sprague Dawley rats 
were placed either on a standard chow diet or on a high-fat 

diet. After 16 weeks, half of the high-fat group was ran-
domized to receive VSG whereas the remaining rats re-
ceived sham surgery to control for the stress of laparotomy. 
The VSG-operated rats lost approximately 25% of their 
body weight after eight weeks, which is comparable to that 
of the human procedure, while the sham-operated groups 
continued to gain weight during this time period. Immuno-
histochemical analysis was then performed on hypotha-
lamic sections. Levels of the chemokine monocyte chemo-
attractant protein 1 (MCP1) were decreased in the VSG-
operated group compared to the sham-operated group on 
a high-fat diet and approached the levels found in the 
sham-operated group on the low-fat chow diet. Similar 
findings were made on the levels of pro-inflammatory 
phosphorylated signal transducer and activator of tran-
scription 3 (pSTAT3) specifically in hypothalamic microglial 
cells.  

In the study of McGavigan et al. [40], high-fat diet-
induced obese C57BL/6J mice received either VSG or sham 
surgeries. A subgroup of sham-operated mice was then 
weight-matched to the VSG group by chronic caloric re-
striction – an important control to ensure any changes 
seen are not simply due to weight loss. All groups lost 
weight during the first two weeks postoperatively, high-
lighting the sensitivity of mice to surgical stress. However, 
by the 10th week, VSG-operated mice weighed approxi-
mately 10% less than the sham-operated ad libitum fed 
mice, consuming significantly less food during this time 
period. Hypothalamic lysates were then prepared for 
Western Blot analysis. Levels of phosphorylated (activated) 
PERK and eIF2-α were reduced in VSG mice, as was TNF-α. 
This was not found in the weight-matched control group 
suggesting that reduced hypothalamic ER stress and in-
flammation are effects specific to VSG. A selective reduc-

FIGURE 3: Molecular and cellular processes linking chronic high-fat diet consumption with leptin resistance and obesity. The rise in cir-
culating saturated fatty acids from chronic consumption of a high-fat diet leads to activation of TLR4 in hypothalamic microglia which then 
release pro-inflammatory cytokines such as TNF-α. This in turn leads to the release of the chemokine fractalkine from adjacent neurons 
which recruits circulating monocytes into the hypothalamus and which then differentiate into activated microglia. A vicious cycle is thus 
initiated which progressively worsens leptin resistance in hypothalamic neurons contributing to increased food intake and obesity. TLR4 – 
toll-like receptor 4, TNF-alpha – tumor necrosis factor alpha.  
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tion in Adlercreutzia microbiota after VSG was proposed to 
provide the link between changes in gut anatomy and brain 
cellular pathology. 

The studies of Xiang et al. and McGavigan et al., de-
spite only being associational in nature, collectively provide 
persuasive evidence that VSG reduces hypothalamic in-
flammation, gliosis and/or ER stress in obesity (Figure 4). 
By extension, it can be reasonably inferred that this partic-
ular bariatric surgical procedure restores leptin sensitivity 
to cause marked and lasting weight loss. In support of this 
idea, VSG-operated rats and mice have lower circulating 
leptin levels compared to pair-fed controls with similar 
adiposity indicative of decreased leptin resistance [45], 

[46]. Furthermore, VSG-operated rats are more responsive 
to the acute appetite suppressing effects of exogenous 
leptin treatment than pair-fed rats [45]. On the other hand, 
unlike celastrol [24] or withaferin-A [26] treatments, leptin 
receptor-deficient fa/fa Zucker rats [47] and db/db mice 
[48] still lose weight after VSG, suggesting that leptin is a 
dispensable/redundant mediator of its effects on whole-
body energy balance. One potential way to resolve these 
inconsistencies is to induce hypothalamic ER stress and 
leptin resistance post-abdominal surgeries in rodents 
through intracerebroventricular administration of tuni-
camycin and to assess changes in feeding and body weight 
[13].  

FIGURE 4: Amelioration of hypothalamic inflammation, ER stress and gliosis after VSG. After VSG, activation of FXR/TGR5 in hypothalam-
ic neurons from the rise in circulating bile acids, and GLP-1 receptors in hypothalamic glial cells from the rise in circulating GLP-1, may 
contribute to amelioration of inflammatory processes, ER stress, gliosis and leptin resistance in obesity, thereby potentially contributing to 
reduced food intake and lasting weight loss. FXR -  farnesoid X receptor, GLP-1 -  glucagon-like peptide 1, ObR – leptin receptor, MCP-1 - 
monocyte chemoattractant protein 1, TGR5 -  Takeda G-protein 5 receptor, TLR4 – toll-like receptor 4, TNF-alpha – tumor necrosis factor 
alpha, VSG -  vertical sleeve gastrectomy. 
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Further questions still remain of course such as the de-
finitive nature of the anti-inflammatory/ER stress relieving 
gut-derived factor(s) enhanced after VSG. Bile acids acting 
on hypothalamic farnesoid X receptors (FXR) and/or 
Takeda G-protein 5 receptors (TGR5) [49-52] are possible 
candidates as they are essential for the reduced food in-
take and body weight postoperatively [42, 53, 54]. In this 
context, bile acids would conceivably be mediating their 
effects through FXR and TGR5 in hypothalamic neurons 
and not glial cells [52, 55]. On the other hand, enhanced 
GLP-1 receptor signaling in hypothalamic astrocytes [56] 
and/or microglia [57] could explain their reduced activa-
tion after VSG thereby contributing to weight loss but 
again this is not supported by studies on germline GLP-1 
receptor deficient mice [58]. Nevertheless, post-embryonic 
hypothalamic microglial/astrocytic ablation approaches [25, 
28, 29] may yield different findings. 

 

CONCLUSIONS AND FUTURE DIRECTIONS 
The fact that chemical hypothalamic ER stress relievers and 
VSG both can reverse a pathologic brain state in animal 
models of obesity suggests that rather than just treating its 
symptoms, they tackle it at one of its root causes. Future 
work will be required to verify if the promising animal find-
ings can be translated to humans. For example, assessing 
human hypothalamic gliosis through the use of T2-
weighted magnetic resonance imaging [59] or more direct-
ly with positron emission tomography [60] may reveal if 

VSG has an inhibitory effect. Furthermore, patients with 
higher levels of hypothalamic gliosis may respond better to 
VSG which would take us one step closer to personalized 
treatment options for individuals with severe obesity. 
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