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ABSTRACT  Autophagy (here refers to macroautophagy) is a catabolic 
pathway by which large protein aggregates and damaged organelles are 
first sequestered into a double-membraned structure called autophago-
some and then delivered to lysosome for destruction. Recently, tremen-
dous progress has been made to elucidate the molecular mechanism and 
functions of this essential cellular metabolic process. In addition to being 
either a rubbish clearing system or a cellular surviving program in response 
to different stresses, autophagy plays important roles in a large number of 
pathophysiological conditions, such as cancer, diabetes, and especially 
neurodegenerative disorders. Here we review recent progress in the role 
of autophagy in neurological diseases and discuss how dysregulation of 
autophagy initiation, autophagosome formation, maturation, and/or au-
tophagosome-lysosomal fusion step contributes to the pathogenesis of 
these disorders in the nervous system. 
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AUTOPHAGY 
Autophagy is an evolutionary conserved cellular process, 
which is characterized by the appearance of double-
membrane autophagosomes sequestering portions of cel-
lular organelles and cytoplasm and subsequently delivering 

them to the lysosome for degradation [1, 2]. After destruc-
tion of the autophagic cargo, amino acids, nucleotides, 
fatty acids, sugars, the building blocks are released into the 
cytosol and reutilized in metabolic pathways [3]. Therefore, 
autophagy is crucial for maintaining cellular homeostasis as 
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well as remodeling during normal development, and plays 
a critical role in overcoming adverse conditions, such as 
starvation and intrinsic or extrinsic cellular stresses (hypox-
ia, reactive oxygen species accumulation, endoplasmic 
reticulum stress and bacterial infections) [4]. Dysfunctions 
in autophagy have been associated with a variety of pa-
thologies including cancer [5-8], neurodegenerative dis-
eases [9-13], inflammatory diseases [14, 15], metabolic 
diseases [6, 16, 17] and heart dysfunction [18-20]. 

The formation of the autophagosome is dominated by 
a series of autophagy-related (ATG) genes and protein 
complexes acting sequentially, so that autophagy is in-
duced when needed, but otherwise maintained at a basal 
level. The ULK1 complex (ULK1/2–ATG13–FIP200–ATG101) 
is in charge of autophagy induction, the class III phosphati-
dylinositol 3-kinase (PI3K)/VPS34 complex (VPS34, Beclin 1, 
ATG14 and VSP15 form the core of this complex, while Bif, 

Ambra1 and UVRAG, positively regulate its activity) is in 
charge of autophagosome initiation, ATG12–ATG5–
ATG16L1 and LC3-I/LC3-PE (LC3-II) complexes are in charge 
of the extension and closure of the autophagosome double 
membranes (Figure 1). After autophagosome maturation, 
its outer membrane fuses with the lysosome membrane, 
the inner membrane and contents are degraded by hydro-
lases in the lysosome, thus generating amino acids and 
other cellular building blocks recycled by the cell, and this 
process is also a quality control mechanism for cellular 
organelles and proteins [21-23]. 
 

THE REGULATION OF AUTOPHAGY 
Besides the core components mentioned above, autopha-
gy is regulated by important nutrient-sensing pathways 
including the mammalian target of rapamycin complex 1 
(mTORC1) and AMP-activated protein kinase (AMPK), 

FIGURE 1: Schematic of the mammalian autophagy pathway. This diagram shows a simplified version of autophagy. Nutrient or growth 
factor deprivation and low energy are well established autophagy inducers, leading to AMPK activation and mTORC1 inhibition, which 
positively trigger the formation of ULK1 complex (ULK1, ULK2, ATG13, FIP200 and ATG101). This complex subsequently activates the VSP34 
complex (VSP34, Beclin1, VSP15 and ATG14) to promote PI3P synthesis in pre-autophagosomal structures, thus the initiation of autophagy 
has been activated. PI3P specifically binds its effector WIPI2 and catalyzes two types of ubiquitination-like reactions that are in charge of 
the extension and closure of the autophagosome double membranes. In the first reaction, ATG12 and ATG5 are conjugated to each other 
in the presence of ATG7 and ATG10, and ATG16L subsequently binds to them to form the ATG12–ATG5–ATG16L1 complex. In the second 
reaction, LC3-I and PE are conjugated to membranes in the presence of ATG14, ATG7 and ATG3, this process is facilitated by the ATG12–
ATG5–ATG16L1 complex, ultimately leading to the formation of the complete autophagosome. Receptor proteins such as p62, NDP52, and 
NBR1 are responsible for the recognition of cytoplasmic targets (e.g., protein aggregates, damaged mitochondria, ER/ribosome, and infec-
tious agents), and establish a bridge between LC3-II and specific ubiquitinated cargos to sustain the engulfment of a variety of substrates. 
In the final step of the process, the completed autophagosomes are then trafficked to fuse with lysosomes, resulting in the degradation of 
the vesicle contents, and this process is regulated by LAMP1/2, EPG5, HOPS, PLEKHM1 and SNAREs. AMPK - AMP-activated protein kinase; 
mTORC1 - mechanistic target of rapamycin complex 1; ULK1 - Unc-51-like kinase; ATG - autophagy protein; VPS34 - phosphatidylinositol 3-
kinase VPS34; PI3P - phosphatidylinositol 3-phosphate; PE - phosphatidylethanolamine; RP - receptor protein.  
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which oppositely modulate the ULK1 complex via a series 
of phosphorylation events, inhibiting or activating autoph-
agy, respectively (Figure1). 

Nutrients and growth factor (signaled by receptor tyro-
sine kinases and PI3K/AKT pathway) availability are sensed 
by mTORC1, which inhibits autophagy by phosphorylating 
both ATG13 and ULK1 at Ser 757 and by binding to the 
ULK1 complex, thereby inhibiting the activity of ULK1 ki-
nase and blocking the formation of the phagophore [24-28]. 
On the other hands, low cellular energy levels activate 
AMPK by phosphorylation of Thr 172 and subsequently 
stimulates autophagy through activating ULK1 by phos-
phorylation of Ser 77 and Ser 317 under glucose depriva-
tion [29] or Ser 555 under mitophagy and amino acid star-
vation [30]. Activation of the ULK1 complex leads to the 
recruitment of VPS34 to the phagophore initiation sites, 
thus stimulating the formation of the phosphatidylinositol 
3-phosphate (PI3P) complex and the production of PI3P, 
which, in turn, helps to recruit ATG16L1 by WIPI2 to au-
tophagosome formation sites [31]. Some signals act via the 
ATG6 orthologous Beclin 1, which promotes VPS34 activity 
[32, 33]. While Bcl2, WASH, Rubicon, and Cdk1/5 negative-
ly regulate the PI3P complex to suppress autophagy [34, 
35]. 

The ATG12–ATG5–ATG16L1 complexes and ATG8/LC3 
ubiquitin-like conjugation systems are required for main-
taining the phagophore expansion. Prior to this process, 
ATG12 is activated by ATG7 (E1-like enzyme), attached to 
ATG5 by ATG10 (E2-like enzyme) and then to ATG16L, and 
finally enters the phagophore as a ATG5-ATG12-ATG16L1 
complex. LC3 also undertakes an analogous processing: it is 
first cleaved by ATG4, which exposes a glycine residue by 
cleaving the C terminus of LC3 (LC3-I), and then conjugated 
to the lipid phosphatidylethanolamine (PE) with the help of 
ATG7, ATG3 and the ATG5-ATG12-ATG16L1 complex, lead-
ing to LC3-II formation. This process is closely associated 
with the extension and closure of the autophagosome 
double membranes [36]. The recognition of cytoplasmic 
targets is aided by receptor proteins, such as p62/SQSTM1 
(ATG19 in yeast) [37, 38], OPTN [39], NDP52 [40], NBR1 
[41], ALFY [42], and TRIM5 [43], which bind to ubiquitinat-
ed proteins and link them to LC3 in the phagophore. Fusion 
of autophagosomes with lysosomes is supported by Rab7 
GTPase and the lysosomal associated membrane protein 
1/2 (LAMP1/2) [44, 45], where EPG5 [46, 47], HOPS[48, 49], 
PLEKHM1[50]and SNAREs[51] are also required. Autophag-
olysosomal contents are decomposed by lysosomal acid 
hydrolases, including Cathepsin B, D, and L [52-54]. 
 

AUTOPHAGY AND THE NERVOUS SYSTEM 
The brain is often the most severely affected organ in most 
lysosome disorders and mutations in genes involved in 
autophagy pathways are usually linked to neurodegenera-
tive disorders, indicating the heavy reliance of neurons on 
autophagy to maintain normal function and homeostasis.  

In neurons, autophagic vacuoles (AVs) are generated in 
axons while lysosomes are concentrated mainly near the 
cell body, which means that there are long distances be-

tween AVs and lysosomes due to the large expanses of 
dendritic and axonal cytoplasm [55]. In addition, the dys-
function of cell division in neurons causes particular obsta-
cles in preventing impaired organelles and other waste 
from accumulating over a life time. In contrast, mitotic 
cells can dilute these waste burdens by cell division [56, 
57].Thus, neurons are particularly vulnerable for gradually 
losing the ability of efficiently clearing those burdens due 
to aging, which eventually results in abnormal accumula-
tion of autolysosomal substrates like ubiquitinated protein 
aggregates, resulting in degeneration of neurons[30, 58]. 

Although those ubiquitinated substrates can be cleared 
through autophagy or the ubiquitin proteasome system, 
autophagy is the only route to degrade large impaired or-
ganelles or protein aggregates, because they are too large 
to go into the narrow entrance of the proteasome chamber 
in the proteasome pathway. This highlights the essential 
role of autophagy in protein degradation and recycling in 
the mammalian nervous system. 

 

AUTOPHAGY IN NEURODEGENERATIVE DISEASES 
Increasing evidence has confirmed the importance of au-
tophagy in neuronal health, and a strong link between au-
tophagy and neurodegenerative diseases has been estab-
lished based on its role of clearing abnormal aggregated 
proteins [59]. In fact, the intra neuronal aggregated pro-
teins, which appear in the most late-onset neurodegenera-
tive diseases, are usually the substrates for autophagic 
degradation [60, 61]. The vast majority of neurodegenera-
tive diseases, including sporadic forms and familial forms, 
are associated with inherited genetic mutations, and the 
assessment of the functions of these disease-associated 
genes has indicated autophagic dysfunction in pathogene-
sis [61]. However, the contribution of autophagy dysfunc-
tion to neurodegenerative disease progression is unknown. 
 

ALZHEIMER’S DISEASE 
Alzheimer’s disease (AD) is the most common neuro-
degenerative disease that is characterized by extensive loss 
of cognitive functions. The main pathological hallmarks of 
AD are extracellular senile plaques which are composed of 
aggregated β-amyloid (Aβ) and intracellular neurofibrillary 
tangles (NFT) which are made of aggregated hyperphos-
phorylated tau protein [62]. 

Aβ originates from proteolysis of the amyloid precursor 
protein (APP) by the sequential enzymatic actions of β-site 
APP-cleaving enzyme 1 (BACE1), β-secretase, and γ-
secretase, a protein complex with presenilin 1 (PS1) at its 
catalytic core. In AD brains, a high level of APP proteins, Aβ 
and PS1, accumulate in AVs in swollen dystrophic neurites, 
and autophagy activation was elevated after Aβ stimula-
tion or in APP/PS1 mice, a mouse model of AD, indicating 
that autophagy is implicated in AD pathogenesis [63-
65].There is a complex relation between Aβ and autophagy. 
Aβ may be generated in AVs during autophagy, ATG7 dele-
tion results in lower Aβ extracellular secretion and plaque 
formation in APP transgenic mice [66], suggesting that the 
activation of autophagy may further exacerbate AD patho-
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genesis in AD brains [65]. However, Aβ may also be de-
graded by autophagy, it has been reported that enhance-
ment of autophagy can reduce Aβ levels in a number of 
systems [67-70].  

Hyperphosphorylated tau accumulation into intracellu-
lar tangles is another pathological hallmark of AD, and is 
also found in other neuronal diseases, such as frontotem-
poral dementias (FTDs) [71]. Abnormal tau disrupts vesicle 
transport in axons by destroying the dynein-dynactin com-
plex, raising the number of autophagosomes and leading 
to tau-induced toxicity in AD and FTDs [72, 73]. New data 
suggested that autophagy is able to degrade both soluble 
and aggregated forms of tau. Thus, the inhibition of au-
tophagy accelerates tau aggregation and toxicity, and in 
contrast, treatment with rapamycin, an autophagy activa-
tor, decreases tau pathology [74-76]. This could be further 
confirmed by the studies in transgenic mouse models, and 
the results indicated that autophagy activation can sup-
press the formation of tau pathology and subsequently 
ameliorate cognitive deficits [77-79]. Moreover, impaired 
lysosomal membrane integrity was also emerged in AD 
patients [80], and tau has been reported to perturb lyso-
somal permeability by binding the membrane of lysosomes 
both in vitro and in vivo [76, 81]. 

In healthy neurons, AVs are efficiently disposed, but in 
AD brains the impaired clearance of AVs, not induction of 
autophagy itself, results in the accumulation of autophagic 
vacuoles [30], indicating that the adjustment regulation of 
the late steps of autophagy could be a possible therapeutic 
strategy for AD. A further study demonstrated that the 
enhancement of AVs is found in PS1-rich locations [82], 
and knock down of PS1 leads to defects in autophagosome 
clearance, lysosomal acidification, and lysosomal proteolyt-
ic activity. Mutations of PS1 result in similar abnormalities 
in the autolysosomal pathway and are associated with ear-
ly-onset AD [83]. Moreover, lack of phosphorylation on 
Ser367 of PS1 blocks the fusion of autophagosome and 
lysosome, and leads to Aβ accumulation in the mouse 
brain by reducing β C-terminal fraction (CTF) degradation 
[84]. A recent study points out that phosphorylated PS1 is 
capable of interacting with Annexin A2 which regulates the 
autophagosome-autolysosome fusion by promoting the 
combination of Vamp8 and autophagosomal SNARE Syn-
taxin 17 [84]. Based on these observations, it is reasonable 
to propose that recovering lysosome function may en-
hance the clearance of protein aggregates. And this can be 
further confirmed by the results that the deletion of cysta-
tin B, an inhibitor of lysosome cysteine proteases, pro-
motes the removal of aberrant protein aggregations in 
lysosomes of AD mice [85]. 

Recently, new mechanistic insights proposed that au-
tophagic pathology in AD is caused by abnormal axonal 
retrograde transport of AVs. Aβ oligomers can bind to 
dynein intermediate chain (DIC) and cause the deficiency 
of dynein motors, which block its function of providing 
motility for retrograde transport and sending AVs to lyso-
somes for digestion. Hence, retrograde transport of axonal 
autophagosomes is obstructed and leads to autophagic 
stress in AD neurons [86]. 

Beclin1, the key factor in autophagosome formation, 
has been shown to be suppressed both on mRNA and pro-
tein levels in AD brains [87, 88]. A study showed that the 
decline of Beclin1 on protein level is caused by caspase 3 
cleavage, which is activated in AD patients brains and leads 
to autophagy disruption [89]. Nrf2, a vital transcription 
factor for regulating autophagy related protein transcrip-
tion [90], could stimulate autophagy by inducing autopha-
gy receptor NDP52 and lower aggregated tau proteins in 
response to oxidative stress [91]. Based on these results, 
the levels of Beclin1 and Nrf2 are thought to be regarded 
as common potential markers for pathology of AD.  

It has been identified by genetic studies that phospha-
tidylinositol binding clathrin assembly protein (PICALM) is 
involved in autophagy [92, 93], and changes in the level of 
this protein have been found in AD patients brains [94, 95]. 
PICALM is a clathrin adaptor protein, and is involved in 
endocytic trafficking by regulating endocytosis of soluble 
NSF attachment protein receptors (SNAREs), thus enhanc-
ing autophagy to clear tau aggregations [96]. In addition, 
PICALM could act as an autophagy receptor when com-
pounded with assembly polypeptide 2 (AP2), that own the 
function of interacting with LC3 and targeting APP into 
autophagosomes [97]. 

Researchers have found that many proteins prevent or 
promote AD progression via autophagy pathway. Nuclear 

receptor binding factor 2（NRBF2）is a component of PI3K 

complex and involve in the regulation of autophagy. A 
study discovered that NRBF2 is reduced in the hippocam-
pus of 5XFAD mice. However, knockout of NRBF2 can in-
crease the level and half-life of APP-CTFs, Aβ1-40 and 
Aβ1-42 apparently, which demonstrates that NRBF2 plays an 
important role in the degradation of APP-CTFs and Aβ. In 
the brain of 5XFAD AD mice, NRBF2 is found to interact 
with APP and recruit APP and APP- CTFs into autophagic 
structures and trigger their degradation in autolysosome. 
Besides, overexpression of NRBF2 decreases p62 but en-
hances LC3, which means that it is able to facilitates au-
tophagy [98]. 

Transient receptor potential Mulcolipin-1 (TRPML1), 
which’s expression is decreased in APP/PS1 transgenic 
mice, is involved in the initiation of autophagy by inhibition 
of mTOR and activation of AMPK signaling pathway. Over-
expression of TRPML1 not only decreases the expression of 
Beclin1, LC3 and LAMP1, but further reduces cell viability 
and lysosomal ion concentration which have been impaired 
by Aβ1-42 [99].The triggering receptor expressed on myeloid 
cells 2 (TREM2) is an immune receptor which recruits PI3K 
through adaptor DAP 10 and promotes late-onset AD. 
Abundant LC3II and multivesicular structures with lower 
expression of p62 can be observed in 5XFAD with negative 
Trem2 expression, which shows that the deficiency of 
TREM2 further induces autophagy. And it is further identi-
fied that in the TREM2-deficient microglia from AD mice or 
human, mTOR is inhibited while AMPK is activated. Those 
reactions indicate that autophagy has been further induced 
and results in the removal of Aβ accumulated in microglia 
[100]. And it is also reported that deficiency of Toll-
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interacting protein (Tollip) disrupts endosome-lysosome 
fusion and promotes the accumulation of Aβ in neurons 
with an enhancement of p62, Parkin and the number of 
autophagosomes, which are involved in autophagy and 
mitophagy [101]. Therefore, the deficiency of TRPML1, 
TREM2 or Tollip in AD cases may have a positive effect to 
protect neurons via autophagy. 

In addition, ErbB2 can physically dissociate Beclin-1 
from the VPS34-VPS15 complex, and suppression of ErbB2 
by an inhibitor promotes autophagy activation and de-
creases the level of βCTF and Aβ in AD models [102]. Hence, 
the presence of ErbB2is unbeneficial to the development 
of AD. 

Recent studies have demonstrated that autophagy-
related drugs or compounds, such as the mTOR inhibitor 
rapamycin, can rescue the cognitive deficits and remove 
the aggregates (such as Aβ and tau) in AD cases efficiently 
[74, 103]. Arctigenin, which is an extract from Arctium lap-
pa, can induce autophagy by inhibiting AKT/mTOR pathway 
as well as activating AMPK/Raptor pathway, and then en-
hance Aβ clearance in cell and mouse models of AD [104]. 
The natural polyphenol resveratrol controls Aβ metabolism 
and mediates the anti-amyloidogenic effect through acti-
vating AMPK pathway, subsequently triggering the au-
tophagic degradation of Aβ [105]. Functionalized single 
walled carbon nanotubes (SWNT) were found to restore 
normal autophagy by repairing aberrant activation of 
mTOR pathway and deficit in lysosomal proteolysis, which 
shows a novel neuroprotective approach in AD therapy 
[106]. Additionally, GTM-1 (a novel autophagy inducer) 
[107], latrepirdine (a pro-neurogenic, antihistaminic com-
pound) [108], GSK-3 inhibitor (such as L803-mts) [109, 0], 
trehalose (a natural disaccharide) [78, 79], temsirolimus (a 
compound for renal cell carcinoma treatment) [111] and 
nilotinib (a drug for adult chronic myelogenous leukemia 
treatment) [112] also exert functions of autophagy induc-
tion and antagonism against Aβ toxicity in AD cases. Many 
active ingredients extracted from traditional Chinese herbs, 
like DDPU [113] (a ginsenoside derivative), berberine [114] 
(an isoquinoline alkaloid isolated from the coptidis Rhi-
zoma), DNLA [115] (an active ingredientextracted from 
Dendrobium nobile Lindl) also have therapeutic effects in 
AD models. The autophagy targets of these compounds are 
listed in Table 1. 

 

PARKINSON’S DISEASE 
Parkinson’s disease (PD) is the second most prevalent neu-
rodegenerative disease after AD, and it is characterized by 
selective loss of dopamine neurons in the substantia nigra 
(SN) and the presence of Lewy bodies, which are composed 
of α-synuclein and poly-ubiquitinated proteins [116]. In 
addition to motor syndromes such as resting tremor and 
muscular rigidity, PD patients also suffer from non-motor 
psychological and somatic symptoms [117], these influence 
human normal life seriously, and the main triggers of this 
disease are a combination of genetic predisposition and 
environmental factors.  

In brains of PD patients, aberrant lysosomes and aggre-
gated autophagosomes were observed in neurons [118], 
indicating a relationship between autophagy and PD. One 
of the pathological hallmarks of PD is accumulation of Lewy 
bodies, main components of which are misfolded and ag-
gregated α-synuclein [119, 0]. The pathogenic role of au-
tophagy in PD was revealed by increasing levels of α-
synuclein when lysosomes are inhibited, and misfolded α-
synuclein oligomers can be removed by different catabolic 
pathways including macroautophagy and chaperone-
mediated autophagy (CMA) with different pathological 
situations, while α-synuclein monomers are also degraded 
by the proteasome [121, 122], suggesting a close link be-
tween α-synuclein degradation and autophagy. Further-
more, both over-expression of wild-type α-synuclein or 
A30P and A53T mutations of α-synuclein can inhibit au-
tophagy [123, 124], and up-regulation of transcription fac-
tor EB (TFEB), a key autophagy modulator [125], could alle-
viate lysosomal damage by promoting its biogenesis, thus 
relieving α-synuclein associated pathology of neurodegen-
erative diseases [126, 127]. 

Emerging results have suggested that aberrant autoph-
agy is one of the underlying mechanisms for PD, and this 
can be proved by evidences that several genetic mutations 
are linked to autophagy in hereditary forms of PD. In auto-
somal dominant PD, mutations in vacuolar protein sorting-
associated protein 35 (VPS35) and leucine rich repeat ki-
nase 2 (LRRK2) are mainly present. VPS35 is a retromer 
complex component, which recruits the actin nucleation-
promoting WASP and Scar homolog (WASH) complex to 
endosomes. D620N mutation of VPS35 perturbs this re-
cruitment and causes the mislocalization of mATG9 and 
defect of autophagosome formation [128]. LRRK2 exhibits 
pleiotropic functions, recent evidence raises the possibility 
that the toxic actions of LRRK2 are mediated by α-synuclein 
[129]. Shortened neurites and autophagosomes aggrega-
tion could be observed in differentiated SH-SY5Y cells ex-
pressing G2019S mutation of LRRK2 [130], which could 
cooperate with α-synuclein and cause age-related deficits 
of autophagy in a C. elegans model [131]. In the meantime, 
LRRK2 is able to recruit the PI3K III complex and Rubicon to 
the phagosome which inhibit the maturation of the phago-
some [132]. Besides, mutations in SNCA (encoding α-
synuclein), CHCHD2 (encoding a mitochondrial protein) 
and DNAJC13 (encoding a chaperon REM-8 involved in pro-
tein trafficking) are also related with autosomal dominant 
PD [117]. 

In autosomal recessive forms of PD, mutations in Parkin 
RBR E3 ubiquitin protein ligase (Parkin) [133] and PTEN 
induced putative kinase 1 (Pink1) [134] are the main path-
ogenic factors, accounting for 50% of familial cases in Eu-
rope [135]. A deficit in striatal synaptic plasticity and 
evoked dopamine release response was found in the stria-
tum of mice where Parkin was deleted [136], and impaired 
activity of mitochondria was also observed in striatal neu-
ron [137]. Similarly, deletion of Pink1 also leads to im-
paired respiration in striatal mitochondria and enhances 
sensitivity to oxidative stress in the cerebral cortex of mice 
[138]. Indeed, these two  proteins  act  in the  same way by  
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selectively degrading damaged mitochondria to promote 
mitophagy [139, 140]. In this process, the proteasome-
mediated degradation of Pink1 is stalled on damaged mito-

chondria, the accumulated Pink1 subsequently phosphory-
lates ubiquitin and recruits Parkin on the outer membrane 
of these mitochondria and results in their sequestration 

TABLE 1. Autophagy-related potential drugs for the treatment of neurodegenerative diseases. 
 

Disease Drug Autophagy targets 

AD 

Rapamycin mTORC1 inhibition  

 Arctigenin mTORC1 inhibition ,AMPK activation 

Latrepirdine mTORC1 inhibition 

Resveratrol  AMPK activation 

SWNT  mTORC1 inhibition, lysosomal proteolysis 

 Nilotinib PI3K CIII complex 

Trehalose AMPK activation 

Temsirolimus mTORC1 inhibition 

GSK-3β inhibitor, such as L803-mts Lysosomal acidification  

GTM-1 Autophagosome maturation  

DDPU mTORC1 inhibition 

Berberine PI3K CIII complex 

Dendrobium nobile Lindl alkaloid (DNLA)  Autophagosome formation 

PD 

Curcumin mTORC1 inhibition 

Resveratrol  AMPK activation 

Trehalose PI3K CIII complex 

Lithium mTORC1 inhibition 

Beclin-1 expression mimetics  PI3K CIII complex 

Nilotinib Formation of autoplysosome 

Piperine mTORC1 inhibition 

Sestrin2 AMPK activation 

Glycyrrhizic acid PI3K CIII complex 

Calcitriol  AMPK activation 

HD 

Rapamycin,CCI-779 mTORC1 inhibition  

Rilmenidine AMPK activation 

Acetylation at Lys444 of mutant HTT HDAC modulation  

Histone deacetylase inhibitor HDAC modulation  

Lithium mTORC1 inhibition 

CTEP Formation of autoplysosome 

Liraglutide AMPK activation 

Neferine AMPK activation 

ALS 

Rapamycin TORC1 inhibition 

Lithium,VPA Lysosomal acidification  

Trehalose  Autophagosome formation 

 Berberine mTORC1 inhibition 

S6K1 inhibitor AMPK activation 

n-butylidenephthalide (BP) mTORC1 inhibition 
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into autophagosomes. In the meantime, some outer mem-
brane proteins are ubiquitinated by activated Parkin, and 
subsequently phosphorylated by Pink1, these linkages elicit 
a positive feedback involving more ubiquitinated proteins 
of mitochondria [139, 141-143]. Hence, a defect in mitoph-
agy may be the cause in Pink1 or Parkin-positive familial 
forms of PD due to the accumulation of damaged mito-
chondria and excessive reactive oxygen species (ROS) pro-
duction. In addition, the mutation of DJ-1 (a mitochondrial 
protein involved in the moderation of oxidative stress) is 
also related to this forms of PD, defective morphology and 
reduced activity are found in dopaminergic neurons de-
rived from DJ-1 or Pink1 knockout mice [144]. In a rote-
none induced PD rat model, the reduction of LAMP-2A 

protein，a marker of CMA, in dopamine neurons can be 

rescued by overexpression of DJ-1 in astrocytes, which 
indicates that astrocyte-specific DJ-1 overexpression has a 
positive effect on CMA [145]. And Fbw7βis a F-box protein 
which is involved in proteasomal degradation by interact-
ing with Parkin and protects neurons from oxidative stress. 
A recent study has shown that 6-OHDA facilitates oxidation 
and the digestion of Fbw7β mainly by CMA. However, the 
level of Fbw7β did not change in postmortem PD brains 
compared to controls, thus needing further studies in vivo 
in PD patients [146]. 

Genome-wide association studies (GWAS) have iden-
tified a few lysosome related genes associated with PD. 
Mutations in the gene GBA (glucocerebrosidase β acid), 
encoding lysosomal hydrolase, disturb autophagosome-
lysosome pathway and cause aggregation of α-synuclein 
[147, 148]. Lysosomal ATPases are enssential for the 
maintenance of lysosomal pH and, therefore, the activity of 
lysosomal proteases. The P-type ATPase ATP13A2 is found 
mutated in early-onset Parkinsonism [149, 150]. Mutations 
in ATP13A2 down-regulate degradation in lysosomes and 
accumulate α-synuclein protein in dopaminergic neurons 
[151, 152]. Recent studies show that depletion of ATP13A2 
causes degradation of ubiquitinated synaptotagmin 11 
(SYT11) that triggers lysosome dysfunction and impaired 
autophagosome degradation, and these can be rescued by 
overexpression of SYT11 in ATP13A2 knockdown cells [153]. 
Another ATPase, ATP6AP2, is required for lysosomal 
acidification and function, depletion of it has been related 
to X-linked parkinsonism with spasticity [147]. Moreover, 
VPS13C, having a function in maintaining the normal condi-
tion of lysosome and mitochondria, is involved in autoso-
mal recessive Parkinsonism [147, 154], and the mutations 
of SCARB2, encoding lysosomal integral membrane pro-
tein-2 (LIMP-2), result in defects in autophagosome or ly-
sosome function [155, 156]. Other abnormalities like oxida-
tive stress also exhibit the involvement of autophagy in PD 
[157]. It has been shown that oxidative stress increases 
autophagic cell death in dopaminergic neurons by reducing 
the expression of Oxi-α, which encodes a novel mTOR acti-
vator [158]. TMEM175 is a component of the lysosome 
proteome which is important to regulate lysosomal pH and 
function. A study has discovered that higher levels of 
phosphorylated α-synuclein aggregates LC3 and p62 when 

TMEM175 is depleted in rat primary hippocampal neurons, 
which means a high risk of PD and damaged lysosomal 
degradation. In addition, TMEM175 is also involved in mi-
tophagy via influencing mitochondrial respiration and regu-
lating energy homeostasis. Thus, abnormal autophagy and 
mitophagy induced by TMEM175 deficiency might play an 
important role in the development of PD [159]. 

As representative candidate drugs for PD, resveratrol 
[160] and curcumin [161] have been reported to promote 
the degradation of α-synuclein by AMPK-SIRT1-autophagy 
pathway and mTOR/p70S6K signaling pathway respectively, 
both of them ameliorate the neurodegenerative pathology 
in cell models of PD. Trehalose enhances the clearance of 
mutant but not wild type α-synuclein in PC12 cells by acti-
vating autophagy [162], and nilotinib reverses motor be-
havior deficits and loss of dopamine neurons via autophag-
ic degradation of α-synuclein in PD models [163]. A therapy 
of beclin 1 injections ameliorates the pathology of synap-
ses and dendrites in PD model mice, and reduces α-
synuclein aggregates, indicating that beclin-1 expression 
mimetics could be a kind of potential drugs for PD treat-
ment [164]. Besides, piperine [165], sestrin2 [166], glycyr-
rhizic acid [167], calcitriolare [168] also exert anti-PD pa-
thology properties in cell or mouse models, their specific 
autophagy targets are listed in Table 1. 

 
HUNTINGTON’S DISEASE 
Huntington’s disease (HD), an autosomal dominant neuro-
degenerative disease, is the most common polyglutamine 
disease. This kind of neurodegenerative disorder is caused 
by a CAG trinucleotide repeat expansion in the first exon of 
the huntingtin (HTT) gene which produces a mutant form 
of the HTT protein (mHTT) and leads to its pathogenic ag-
gregation [169, 170]. Patients with HD suffer progressive 
motor, cognitive and psychiatric dysfunctions, which can 
be manifested by ataxia, chorea, dyskinesia, depression or 
memory and personality disturbances [117]. The pathogen-
ic mechanism of HD is related to interferences in the key 
neuronal genes transcription, disturbances in the cytoskel-
etal system, impairments of mitochondrial activity and 
alterations in the autophagy-lysosome system [171]. 

There are aberrant relations between autophagy and 
the onset of HD. In the postmortem brains of HD patients, 
altered autophagy was observed [172], and activation of 
autophagy by rapamycin (a mTOR inhibitor) treatment 
shows a neuroprotective effect and attenuates HTT toxicity 
in a fly model of HD [173]. Moreover, an altered expression 
of autophagy-related genes has been discovered in HD 
patients. In this aspect, the expression of genes such as 
LC3I, ULK2 and LAMP2 are increased in mRNA level, while 
the expression of EEF1A2, FKBP1A and PINK1 is down regu-
lated [174]. A recent study showed that the V471A poly-
morphism in ATG7 is related to an earlier onset form of HD 
[175]. The exact mechanism of autophagic dysfunction in 
HD is poorly understood, but the inefficient degradation of 
autophagosomes may be the cause of their slower turno-
ver and HTT accumulation in HD cells. This can be proved 
by aggregated autophagosomes observed in cellular and 
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animal models of HD, thus dysfunction of loading into au-
tophagosomes causes an impaired autophagic protein deg-
radation [176].  

Wild type HTT plays a key role in axonal transport of 
autophagosomes together with Huntington associated 
protein 1 (HAP1) [174]. Depletion of HTT in HD models 
results in abnormal accumulation of autophagosomes 
[177], and HTT also shares resemble structure with ATG11 
and mTOR to join in the formation of autophagosome [56, 
178]. Together with the observation that overexpression of 
full-length HTT stimulates activation of autophagy and 
promotes clearance of its mutant form [179], it is tempting 
to speculate that wild type HTT may have extensive inter-
actions with autophagic pathways in HD. Further studies 
revealed that HTT interacts with autophagy-associated 
proteins to influence autophagy pathway indirectly. HTT 
reduces the activity of mTOR by competing with mTOR in 
binding to ULK1, as a result, initiation of autophagy is 
evoked [180, 181]. Additionally, it also acts as a scaffold 
[182] to support translocation and binding of p62, ubiqui-
tinated proteins and LC3 to enhance autophagy activation 
[180]. It’s reasonable to suppose that wild type HTT may 
regulate autophagy in different ways and that dysfunction-
al autophagy may also be implicated in HD cases.  

It seems that heterozygous forms of HD are more 
common in the present studies, which means that patients 
carry a functional HTT along with mHTT [183]. mHTT dis-
plays different properties and functions compared to nor-
mal HTT due to its expanded region of glutamine residues, 
and the interaction between mHTT and its target proteins 
can be determined by the length of its poly-glutamine 
(polyQ) tract [183, 184]. Compared with wild type HTT, 
mHTT seems to mediate autophagy by different ways. In 
addition to pathogenic aggregation of mHTT which aggra-
vates the condition in HD, soluble forms of mHTT also rep-
resent cytotoxicity by interacting with regulators of au-
tophagy like beclin-1, and both of the forms can be de-
graded by autophagy [185, 186]. 

The normal functions of HTT are essential for neuronal 
development. Studies found that autophagosome 
transport is inhibited by either loss of HTT or expression of 
the mutant protein in striatal neurons, subsequently ob-
structing the fusion of autophagosome and autolysosome 
[187]. Further studies found that mHTT can also interact 
with p62 instead of wild type HTT, leading to dysfunction 
of p62 to recognize cargo aggregates and organelles, caus-
ing abnormal autophagy and proteasome degradation [188, 
189]. Besides, mHTT is able to trigger chronic stress and 
prolonged unfolded protein response (UPR), resulting in 
lower aggregate removal and inhibition of  autophagy via 
IRE1 [190]. Recent experiments revealed that mHTT has 
the ability to compete with Ataxin-3 to capture Beclin 1 via 
its polyQ, leading to impairment of starvation-induced au-
tophagy in neurons [184, 191]. In other words, Beclin 1 can 
be recruited by mHTT directly, which may be a reason for 
unsuccessful Beclin 1-mediated long-lived protein turnover 
and reduction of mHTT degradation in HD cases [184, 185].  

Rhes, which is required for autophagy by interacting 
with Beclin 1 and facilitating disassociation between Bcl-2 

and Beclin 1 [192], is invalid when interacting with mHTT 
which causes the impairment of autophagy initiation [192]. 
mTOR, another negative regulator of autophagy, is sepa-
rated by mHTT which forms aggregates around mTOR, thus 
reducing its activity in HD and SCA7 brains [173, 189, 193]. 

Moreover, the activity of some enzymes also plays a 
role in regulating the effect of autophagy to remove mHTT 
aggregates. For example, up-regulation of casein kinase 2 
(CK2) reduces large inclusion formation of mHTT by phos-
phorylating p62[194]. Down-regulation of Phosphatidylino-
sitol-5-phosphate 4-kinase, type II γ (PIP4Kγ) enhances 
basal autophagy and reduces the aggregates and total 
amount of mHTT protein in neurons and fibroblasts respec-
tively and rescues mHTT-induced neurodegeneration in 
two Drosophila HD models [195]. In mHTT-expressing neu-
ro2A, Glycogen synthase (GS) is activated and promotes 
autophagy and this response is specific in neurons. Co ex-
pression of GS and mHTT can be found in HD-associated 
cells which restores autophagy whereas excessive autoph-
agy is easy to cause neuronal death [196]. Overall, mHTT 
has multidirectional effects on the regulation of autophagy, 
the ratio of soluble to aggregated mutant protein may de-
termine the toxic or protective outcome [197]. 

It is worth to mention that the classic inhibitor of mTOR, 
rapamycin or its analogue CCI-779, can alleviate severity of 
Huntington-like phenotype in behavioral experiments and 
facilitate the clearance of mHTT aggregates in a mouse 
model of HD [173], and co-treatment of rapamycin and 
trehalose in mice has a synergistic effect on the induction 
of autophagy which may accelerate the degradation of 
these aggregate-prone proteins efficiently [198]. Besides, 
lithium may be a potential drug for the treatment of PD 
and HD, for it has ability to remove the abnormal accumu-
lations of mHTT and α-synuclein by inhibiting inositol 
monophosphatase and thus inducing autophagy [199]. 
Moreover, acetylation at Lys444 of mHTT [200] and upreg-
ulation of HSC70 and lamp2A [201] have been regarded as 
the novel therapies to remove mHTT by autophagy. Addi-
tionally, some drugs may also be useful for the treatment 
of HD, such as rilmenidine [202], histone deacetylase 
(HDAC) inhibitors [203], CTEP (a negative allosteric modu-
lator of metabotropic glutamate receptor 5 (mGluR5)) 
[204], liraglutide (a GLP-1 analogue) [205], neferine (a 
bisbenzylisoquinoline alkaloid isolated from the lotus seed 
embryo of Nelumbo nucifera Gaertn) [206], their targets 
are listed in Table 1. 

 

AMYOTROPHIC LATERAL SCLEROSIS 
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegener-
ative disease with the symptoms of muscle weakness, 
spasticity and atrophy. Selective loss of motor neurons can 
be observed in the brain and spinal cord of the patients 
[207, 208]. Environmental elements such as exposure to 
toxic substances or heavy metals raise the risk for develop-
ing ALS. The genetic mutations such as superoxide dis-
mutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43) 
and Chromosome 9 open reading frame 72 (C9ORF72), 
fused in sarcoma/translocated in lip sarcoma (FUS/TLS) 
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resulting in accumulation of misfolded proteins have been 
linked to the disease [209]. Like other neurodegenerative 
diseases, there are sporadic and familial forms of ALS, the 
sporadic form is seen in the majority of known cases, while 
the family ones account for approximately 5%-10% [210]. 

Numerous studies try to define the molecular patho-
genesis of these devastating diseases, recently it has be-
come apparent that the autophagic/lysosomal system dys-
function is tightly associated with ALS. Indeed, aggregated 
autophagosomes in the cytoplasm observed in the spinal 
cord of sporadic ALS patients indicate that autophagy is 
activated [211]. Immunohistochemical analysis in a mutant 
SOD1 ALS mouse model (SOD1G93A) has shown the activa-
tion of autophagy [212]. Increased autophagosome for-
mation and decreased phosphorylation of mTOR/Ser2448 
are also found in motor neurons of SOD1G93A transgenic 
mice, indicating that autophagy dysfunction possibly un-
derlies pathological phenomena in ALS [213]. 

SOD1 is the most common mutated gene in ALS, and 
the toxic gain-of-function mutations in this gene lead to its 
misfolding and aggregation [214]. The two studies in SOD1 
mutant mice mentioned above have shown that mutant 
SOD1 enhanced the function of mTOR-dependent autoph-
agy [212, 213]. Besides, p62 is also increasing at the same 
time, which shows that autophagy fails to degrade cellular 
products caused by SOD1 mutations [215, 216]. Further-
more, knockdown of the UPR transcription factor X-box-
binding protein-1(XBP-1) in mice stimulates autophagy and 
promotes digestion of mutant SOD1, which can hinder the 
development of ALS [217]. And the heat-shock protein 
(HspB8) enhanced the ability to remove aggregation and 
mutant SOD1 by promoting autophagy in an ALS model 
[218]. The efficient autophagy clearance of mutant SOD1 
may be beneficial for reducing motor neuron loss in ALS.  

Many reports have revealed that a number of autopha-
gy receptors are encoded by ALS-linked genes, 
p62/SQSTM1 is one of them. p62 contains SMIC, UBA and 
LIR domains, which can bind to SOD1, TDP-43, and LC3, 
respectively [219, 220]. LC3 fails to recognize p62 when 
ALS-associated L341V mutation occurs in such cells, 
whereas ubiquitinated proteins still bind to it, thus causing 
mutant p62 and its binding protein unable to be recruited 
into phagophores and interrupting the autophagy-
mediated degradation pathways [219-221].Consequently, 
this leads to the accumulation of mutant SOD1 and TDP-43, 
further accelerating the development of ALS. Furthermore, 
over-expression of p62 could relieve TDP-43 aggregation 
by autophagy or proteasome pathway in vitro [222]. 

Another autophagy receptor which is associated with 
ALS is optineurin (OPTN). OPTN is a ubiquitin-binding scaf-
fold protein and take part in selective autophagy processes. 
Its activity is regulated by TANK-binding kinase 1 (TBK1), a 
protein involved in autophagy by phosphorylating p62, 
OPTN [223]. Inhibiting the expression of TBK1 interrupts 
efficient formation and maturation of autophagosomes 
[224, 225]. Besides, OPTN also interacts with myosin VI, 
and autophagosome-lysosome fusion will decrease by ALS-
associated mutations in the myosin VI-binding domain of 
OPTN, indicating OPTN is required for autophagosome 

trafficking [226, 227]. Furthermore, OPTN and TBK1 influ-
ence mitophagy. Pink1 and Parkin can recruit TBK1 and 
OPTN which act as autophagic receptor to mitochondria 
membrane, so that they accelerate recruitment of LC3 and 
promote digestion of damaged mitochondria. ALS-
associated mutation in OPTN and TBK1 block the closure of 
depolarized mitochondria and induce the accumulation of 
damaged mitochondria, which can break cell homeostasis, 
especially in neurons [225, 228, 229]. 

Ubiquilin2 (UBQLN2), which acts as a proteasome shut-
tle factor, has an ability to mark the protein with ubiquitin 
label for autophagy degradation, therefore it plays a crucial 
role in formation of autophagosome [230]. Mutations in 
UBQLN2 cause dominantly inherited ALS, resulting in neu-
ron loss, cognitive deficits and shortened lifespan in mouse 
models [231, 231]. Mutant UBQLN2 combines with 
polyubiquitinated proteins prior to proteasome, leading to 
a defect in proteasomal degradation and accumulation of 
misfolded proteins [233, 234]. 

C9ORF72 is the most common genetic factor giving rise 
to ALS, and mutations in the hexanucleotide-repeat expan-
sion of C9ORF72 gene cause disease through a number of 
different mechanisms [235, 236]. C9ORF72 is reduced in 
ALS and FTD. When C9ORF72 is deleted in neurons, the 
accumulation of aggregated p62 and TDP-43 will occur in 
the cell apparently [237]. Meanwhile, decreased activity of 
mTOR accompanied by enlarged lysosomal compartments 
and enhanced autophagic flux were found in C9ORF72 de-
pletion cells, suggesting that C9ORF72 is related to mTOR-
dependent autophagy [238]. In addition, C9ORF72 forms a 
complex with WDR41 and SMCR8 [239, 240]. This complex 
acts as a GDP/GTP exchange factor (GEF) to activate Rab8a 
and Rab39b, thus affecting the formation or maturation of 
autophagosomes [224, 241]. In addition, this C9ORF72 
complex interacts with the ULK1 complex and is required 
for translocation of the later one. Loss of SMCR8 leads to a 
similar phenotype as C9ORF72 depletion and results in 
defective autophagy, indicating that this interaction is re-
quired for modulating autophagy induction [242].Whereas 
a recent study shows a new topic that depletion of 
C9ORF72 is not deleterious by itself but synergizes with 
Ataxin-2 toxicity to impair motor neuron’s function and 
lead to neuronal cell death, thus revealing a double-hit 
pathological mechanism in ALS [237]. 

An additional familial ALS gene has been reported, 
namely endosomal sorting complexes required for 
transport (ESCRT). It is required to form functional multi-
vesicular bodies (MVBs) and mediates its internalization 
process so that most of the substances can be degraded by 
autophagy. ESCRT and its subunit charged multi-vesicular 
body protein-2B (CHMP2B) have been identified to be as-
sociated with ALS. Depletion of ESCRT or mutation in 
CHMP2B inhibited autophagy due to impaired autophago-
some-lysosome fusion, resulting in the accumulation of 
ubiquitin-positive proteins and p62 [42, 243]. Besides, dys-
functional MVBs in ESCRT mutated cells weaken the ability 
to remove TDP-43, which is the main misfolded proteins in 
ALS, also ensuring the connection between ESCRT and ALS 
[244, 245]. 
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Recent studies have shown that progranulin (PGRN), a 
secreted growth factor, and Sigma receptor-1 (SigR1), an 
ER chaperone, contribute to the pathogenesis of ALS and 
both of them own functions in neuronal survival [246, 247]. 
The deficiency of PGRN promotes the formation of TDP-43 
aggregates and inhibits autophagy in neurons [246]. The 
ALS-linked E102Q mutant SigR1 aggregates, co-localizes 
with TDP-43 in the inclusion, leading to accumulation of 
p62 and LC3II and obstructing autophagosome-
autolysosome fusion [247]. 

Mutant Valosin-containing protein (VCP) also has been 
discovered in ALS patients, and it seems to regulate au-

tophagosome removal [248]. VCP is an indispensable com-
ponent to maintain the integrity and dynamics of the lyso-
somal network and is subsequently implicated in the matu-
ration and fusion of autophagosome and autolysosome 
[248-250]. A study found that mutant VCP in ALS interacts 
with TDP-43 genetically and causes the redistribution of 
TDP-43 to the cytoplasm, thus probably acting as a etiology 
of ALS [251, 252].  

It is corroborated that rapamycin also exerts a positive 
effect on the therapy of ALS by a mTOR-dependent path-
way, however, its function has been argued that it cannot 
remove the aggregates apparently in mice expressing ab-

FIGURE 2: An overview of the autophagy pathway and the site of action of disease-associated proteins. A huge number of neurodegen-
erative disease-related genes have been implicated in autophagy function. Mutation or deletion of these genes have been suggested to be 
involved in perturbation throughout the autophagic process, from initiation of autophagosome formation to degradation in the autolyso-
somes. Their proposed sites of action are highlighted in boxes. Please note that some disease-associated proteins act at multiple points in 
the process. AD - Alzheimer disease; PD - Parkinson’s disease; HD - Huntington’s disease; ALS - amyotrophic lateral sclerosis. 
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normal SOD1 [253, 254]. The treatment with lithium is able 
to alleviate the symptoms of ALS in human and animal 
cases by triggering autophagy through the GSK-3β pathway, 
and the collaboration of lithium and valproic acid (VPA) 
may have a better therapeutic effect on ALS [255, 256]. 
Trehalose can upregulate the expression of ATG5, LC3 and 
beclin1, and subsequently promote the formation of aut-
phagosome to delay disease onset and prolong lifespan 
[257]. Besides, berberine [258], p70 S6 kinase 1 (S6K1) 
inhibitors [259] or n-butylidenephthalide (BP) [260] are 
also involved in the autophagy related therapy of ALS, their 
targets are listed in Table 1. 

 
CONCLUSIONS 
Autophagy acts as a ubiquitous degradative pathway of 
large protein aggregates and damaged organelles to main-
tain homeostasis and function of the neurons. To date, 
numerous studies have shown that autophagy plays an 
important role in the onset and development of neuro-
degeneration. To sum up, abnormal proteins which give 
rise to neurodegenerative diseases, such as Aβ in AD, α-
synuclein in PD, HTT in HD and SOD1 in ALS, will modulate 
autophagy in a different manner. Dysfunction in the pro-
cess of autophagy pathway, such as vesicular transporta-
tion, autophagosome formation and autophagosome-
autolysosome fusion, may cause the accumulation of ab-
normal proteins in neurons which may exacerbate the 
damage of neurons. Hence, the dysfunction of autophagy 
process is implicated in the pathology of neurodegenera-
tive diseases. A detailed illustration of autophagic alterna-
tions in neurodegenerative diseases is shown in Figure 2. 

It seems that the proper enhancement of autophagy 
may be beneficial for cell survival in neurons. Thus, au-
tophagy will become a therapeutic target to ameliorate 

neurodegenerative diseases. However, the mechanism of 
autophagy in neurodegenerative diseases and the crosstalk 
between autophagy and other regulatory system, such as 
the immune process and inflammation, is complicated and 
unclear. Moreover, the specific therapeutic target of au-
tophagy and the signal pathways involved is also undiscov-
ered. There are still many unsolved mysteries that need 
further exploration. 
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