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ABSTRACT  Pancreatic ductal adenocarcinoma (PDAC) is predicted to 
become the second leading cause of death of patients with malignant 
cancers by 2030. Current options of PDAC treatment are limited and the 
five-year survival rate is less than 8%, leading to an urgent need to ex-
plore innovatively therapeutic strategies. PDAC cells exhibit extensively 
reprogrammed metabolism to meet their energetic and biomass de-
mands under extremely harsh conditions. The metabolic changes are 
closely linked to signaling triggered by activation of oncogenes like KRAS 
as well as inactivation of tumor suppressors. Furthermore, tumor micro-
environmental factors including extensive desmoplastic stroma reaction 
result in series of metabolism remodeling to facilitate PDAC develop-
ment. In this review, we focus on the dysregulation of metabolism in 
PDAC and its surrounding microenvironment to explore potential meta-
bolic targets in PDAC therapy. 
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INTRODUCTION 
Pancreatic ductal adenocarcinoma (PDAC) is a tumor with 
early metastatic potential and remarkable resistance to 
established therapies such as chemotherapy, radiotherapy, 
and molecular targeted therapy [1]. Given primary localiza-
tion and cell morphology, PDAC has been generally viewed 
to be originated from pancreatic ductal cells. Nevertheless, 
dozens of studies including lineage tracing propose alterna-

tive original sources for PDAC cells. For example, acinar-to-
ductal metaplasia (ADM) frequently occurres at the early 
stage of pancreas carcinoma, suggesting an acinar origin of 
PDAC [2-5]. In addition, emerging evidences suggest that 
some rare cell population named as cancer stem cell might 
be the precursor of PDAC cells for initiation and metastasis 
[1, 6]. Malignant progression of PDAC, starting from the 
pre-cancerous lesion, pancreatic intraepithelial neoplasia 
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Abbreviatons: 
5-HT – 5-hydroxytryptamine, αKG – alpha-
ketoglutarate, ADM – acinar-to-ductal 
metaplasia, Asp – aspartate, ACLY – ATP-
citrate lyase, ECM – extracellular matrix, 
GAPDH – glyceraldehyde-3-phosphate 
dehydrogenase, Gln – glutamine, HBP – 
hexosamine biosynthetic pathway, HIF – 
hypoxia-inducible factor, LDH – lactate 
dehydrogenase, LDLR – low density 
lipoprotein receptor, PanIN – pancreatic 
intraepithelial neoplasia, PDAC – pancreatic 
ductal adenocarcinoma, PPP – pentose 
phosphate pathway, PSC – pancreatic 
stellate cell, R5P – ribose-5-phosphate, ROS 
– reactive oxygen species, TAM – tumor-
associated macrophage, TCA – tricarboxylic 
acid cycle. 
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(PanINs), to advanced invasion and metastasis is accompa-
nied by various oncogene activation and tumor suppressor 
inactivation. KRAS, p16/CDKN2A, TP53, and DPC4/SMAD4 
are viewed as driver genes in PDAC development because 
of their high frequency of mutation during tumorigenesis 
of PDAC [4]. KRAS activating mutations occur at early PanIN 
I stage in 95% of cases, followed by the loss of the func-
tional tumor suppressor gene p16/CDKN2A (> 90%). Inacti-
vating mutations in TP53 (75%) and DPC4/SMAD4 (55%) 
are often observed at late PanIN III stage as shown in Fig-
ure 1 [4, 7]. 

Nutrients in the form of carbohydrates, amino acids, 
and fatty acids are utilized to support biosynthesis, supply 
energy and balance oxidative stress. Aberrant alterations 
of signaling rewire intermediary metabolism to support 
energetic and biosynthetic demands of PDAC cells. Of note, 
PDAC cells are surrounded by a microenvironment which is 
composed of immune cells, stellate cells, and extracellular 
matrix (ECM) [8, 9]. It is therefore necessary to expand our 
knowledge on the effect of metabolic remodeling of the 
tumor microenvironment on PDAC development.  
 

METABOLIC REPROGRAMMING IN RESPONSE TO AB-
NORMAL SIGNALING IN PDAC CELLS 
Tumor cells prefer to take up more glucose for glycolysis 
even in presence of abundant oxygen, which is known as 

Warburg effect [10]. Constitutive activation of KRAS, the 
most prevalent genetic alteration in PDAC development, 
plays a key role in metabolic reprogramming, particularly in 
the glycolytic switch [11-14]. Analyses of gene expression 
and metabolic flux show that oncogenic KRAS upregulates 
expression of glucose transporter -1(GLUT1) to increase 
glucose influx, and hexokinase (HK) 1 and 2 to speed up 
glycolytic activity [13, 15]. Enhanced glycolysis driven by 
oncogenic KRAS supports biomass synthesis. The hex-
osamine biosynthetic pathway (HBP), a side path of glycol-
ysis, is driven by KRAS mutation to provide precursors for 
protein glycosylation (Figure 2) [15, 16]. In addition, KRAS 
activation leads to enhanced entry of glucose carbon into 
the pentose phosphate pathway (PPP) [15]. PPP-derived 
ribose-5-phosphate (R5P) provides materials for DNA and 
RNA synthesis in proliferating cells. Generally, PPP is divid-
ed into two phases: oxidative and non-oxidative. Pancreat-
ic cancer cells with KRAS mutation become dependent on 
non-oxidative PPP. Consistently, KRAS knockdown de-
creases expression of enzymes that govern non-oxidative 
PPP flux, resulting in strong growth inhibition [15]. Of note, 
most normal cells generate R5P through oxidative PPP. This 
discrepancy represents a potential metabolic vulnerability 
in KRAS-driven PDAC [17]. Moreover, KRAS activation co-
ordinates with p16 ablation to upregulate the expression 
and enzymatic activity of NAD(P)H oxidase 4 (NOX4), lead-

FIGURE 1: The pathological stages and dysregulated molecular events in PDAC development. The PDAC development process is catego-
rized into pre-cancerous lesion (pancreatic intraepithelial neoplasia, PanINs) and malignant PDAC according to the pathological grade. Sim-
ultaneously, aberrant genetic alterations occurre at different stages of PDAC development, including activating mutations of KRAS and inac-
tivation mutations of tumor suppressors, like p16/CDKN2A, p53, and DPC4/SMAD4.  
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ing to enhanced oxidation of NAD(P)H. NAD+, the catalytic 
product of NAD(P)H, significantly potentiates glycolysis [18]. 

Glutamine (Gln) belongs to the group of non-essential 
amino acid (NEAA) that contribute to nitrogen and carbon 
donation for rapidly proliferating cells. Besides, KRAS mu-
tant PDAC cells become addicted to Gln. KRAS directs an 
alternative metabolic pathway of Gln by transcriptionally 
regulating expression of key metabolic enzymes including 
glutamate dehydrogenase (GLUD1) and aspartate transam-
inase (GOT1), maintaining redox balance in PDAC cells. In 
this non-canonical pathway, Gln-derived carbon is convert-
ed into aspartate (Asp) through a series of reactions in 
mitochondria. Gln-derived Asp is then released into the 
cytoplasm and converted to oxaloacetic acid (OAA) and 
malate, eventually producing NADPH, a reducing equiva-

lent involved in biosynthesis and reduction of reactive oxy-
gen species (ROS) (Figure 2) [19]. Additionally, Nrf2, known 
as ROS suppressor, facilitates PDAC development [20]. The 
expression levels of Nrf2-regulated anti-oxidant genes are 
induced by KRAS [21]. Therefore, low intracellular ROS 
levels caused by KRAS signaling is vital for PDAC develop-
ment.  

p53 mutation is another prominent genetic event in 
PDAC development. In contrast to KRAS mutations which 
occur at early stage to initiate PanIN lesions, mutations in 
p53 are frequently present at late stages and substantially 
promote PDAC progression. p53 mutation was reported to 
prevent the glycolytic enzyme glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) from nuclear translocation and 
increased GAPDH stability in the cytoplasm, supporting 

FIGURE 2: Metabolic remolding in PDAC cells. (1) KRAS (in cytoplasm) and HIF1α activation in PDAC cells upregulates glucose transporter 
(GLUT1) and other glycolytic related genes to promote glucose (Glc) uptake and enhance glycolysis flux, including the production of lactate 
(Lac) and carbon donation into the hexosamine biosynthetic pathway (HBP) and pentose phosphate pathway (PPP). (2) KRAS activation re-
programs Gln metabolism to balance cellular redox homeostasis. Gln is sequentially converted to Glu and Asp catalyzed by GLS1 and GOT2 in 
the mitochondria, Asp is shuttled to the cytoplasm and generates NADPH after a series of reactions to maintain redox homeostasis. (3) The 
lipid synthesis pathway is activated, citrate is shuttled from the mitochondria into the cytoplasm to produce acetyl CoA (Ace-CoA), thereby 
enhancing de novo lipid synthesis pathway. Concomitantly, uptake of exogenous lipids is increased to meet the demand of nutrients for rapid 
proliferation. (4) The tumor microenvironment, including ECM components and stromal cells, also provide various metabolites/nutrients for 
PDAC cells, such as Ala and Pro derived from collagen degradation or pancreatic stellate cells (PSCs) secretion. The gene expression of mole-
cules labeled in red color are up-regulated. α-KG: alpha ketoglutarate; Ace-CoA: acetyl-Coenzyme A; ACLY:  ATP-citrate lyase; Ala: alanine; 

Asp: aspartate; Cit: citrate; FASN: fatty acid synthase; Glc: glucose; Gln: glutamine; GLS1: glutaminase; Glu: glutamate; GOT: glutamic-
oxaloacetic transaminase; GPT: glutamic pyruvic transaminase; GSH: glutathione reduced; GSSG: glutathione oxidized; HBP: hexamine biosyn-
thetic pathway; HIF: hypoxia-inducible factor; Lac: lactate; LDHA: lactate dehydrogenase A; MDH: malate dehydrogenase; ME: malic enzyme; 
OAA: oxaloacetic acid; PPP: pentose phosphate pathway; Pro: proline; PRODH1: proline dehydrogenase; PSC:  pancreatic stellate cell; Pyr: 
pyruvate; R5P: ribose-5-phosphate; TCA: tricarboxylic acid.  
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glycolysis to avoid apoptosis and autophagy [22]. In addi-
tion, p53 mutations result in a decrease of intermediates in 
the tricarboxylic acid (TCA) cycle, indicating mitochondrial 
repression in PDAC cells [23]. Recent work demonstrated 
that differentiation of malignant PDAC cells could be trig-
gered to prevent PDAC development by p53-dependent 
increase of α-ketoglutarate (αKG) [24]. 

Hypoxia commonly occurs in tumor progression, which 
induces the expression of hypoxia-inducible factor-1 (HIF-
1) and increases its stability. Upregulation of HIF-1α could 
be detected in PDAC. In preclinical models, hypoxia induci-
ble GFPT2 isoform to accelerate HBP [25]. In addition, hy-
poxia-inducible factor 1a (HIF1a) upregulates GLUT1 as 
well as the expression of other glycolysis-related genes to 
generate cytosolic ATP in PDAC cells (Figure 2) [26-28]. 
However, the effect of HIF1a in PDAC development may be 
context-dependent. One study showed that HIF1a invalida-
tion supports PDAC formation in a mouse model [29]. 

The hippo pathway was originally identified to function 
in development, such as controlling organ size [30]. After 
that, the role of the Hippo pathway in cancer development 
has been investigated [31]. Particularly, recent studies indi-
cate that Yap1/Tead2 promote PDAC in a KRAS-
independent manner [32]. Moreover, accumulating evi-
dences show the mutual interaction between the Hippo 
pathway and different metabolic pathways [33]. It was 
reported that glucose metabolism, amino acid metabolism, 
lipid metabolism and mitochondrial fusion are regulated by 
YAP and TAZ [34]. YAP phosphorylation and nuclear trans-
location are modulated by different stress signals and vari-
ous nutrients/metabolites, including redox status, glucose, 
lipids, and G protein-coupled receptors (GPCRs). Recipro-
cally, Hippo signaling also fine-tunes metabolism in the 
body. Activation of YAP/TAZ upregulates expression of 
genes encoding both transporters to increase uptake of 
nutrients/metabolites and rate-limiting enzymes to pro-
mote glycolysis and glutamine catabolism [34]. Therefore, 
it is of great interest to define the effect of Hippo pathway 
on metabolism reprogramming in PDAC development.  

In addition to the dysregulation of glucose and Gln me-
tabolism, adaptive changes of various nutrient/metabolites 
in PDAC development have been uncovered. Preliminary 
data indicate that decrease of arginine levels could trigger 
pancreatic cancer cells death. Some clinical trials of bacte-
rial arginine deaminase or bioengineered arginase, aiming 
to reduce arginine levels, are undergoing in patients with 
different cancer [35, 36]. 5-hydroxytryptamine (5-HT) is 
known as neurotransmitter which controls critical cognitive 
and behavioral functions of humans. A recent report 
demonstrated that 5-HT is elevated in PDAC cells, accom-
panied by increased tryptophan hydroxylase (TPH1) and 
decreased mitochondrial enzyme monoamine oxidase A 
(MAOA) to regulate 5-HT synthesis pathway and degrada-
tion pathway, respectively [37]. In addition, treatment with 
5-HT receptor inhibitor suppresses growth and reprograms 
metabolism of pancreatic tumors, prolonging the survival 
of KPC mice [37]. Moreover, 5-HT activates small GTPase 
Ras-related C3 botulinum toxin substrate 1 (Rac1) to in-

duce trans-differentiation of acinar cells into ductal, known 
as ADM [38].   

 

LIPID METABOLISM IN PDAC 
To sustain uncontrolled cell proliferation, cancer cells need 
to keep generating various cellular components. Lipids are 
fundamental materials for structures of cells. Emerging 
evidence indicates that activated lipid synthesis is required 
for cancer cell growth. At the initial step of de novo lipid 
synthesis, ATP-citrate lyase (ACLY) converts citrate to cyto-
plasmic acetyl-CoA, followed by conversion to malonyl-CoA 
by acetyl-CoA carboxylase (ACC). Acetyl-CoA and malonyl-
CoA are coupled to acyl-carrier protein (ACP) domain of 
fatty acid synthase (FASN) in an NADPH-dependent manner 
to synthesize palmitic acid (16-carbon saturated fatty acid) 
(Figure 2) [39]. 

Lipogenic enzymes including ACLY are frequently over-
expressed in PDAC [40] [41]. The growth of PDAC cells is 
inhibited by the interference of ACLY activity in a xenograft 
tumor model [42]. In addition, patients with pancreatic 
cancer expressing high levels of FASN display shorter over-
all survival period than patients with low FASN expression 
[43]. 

Cholesterol is an essential structural component of cell 
membranes. Fatty pancreases were observed in human 
and are associated with increased risk of pancreas cancer 
[44]. Furthermore, expression of HMG-CoA (3-hydroxy-3-
methylglutaryl-Coenzym-A) reductase and LDLR (low densi-
ty lipoprotein receptor) is elevated in KRAS-driven PDAC 
mouse model. Consistently, LDLR silencing reduces ERK 
signaling activity and inhibits PDAC cell proliferation [45].  

Hypoxia-inducible HIF-1 also supports lipid synthesis. 
HIF-1 activation suppresses αKG dehydrogenase (αKGDH), 
which drives the metabolic shift from the TCA cycle to IDH 
(isocitrate dehydrogenase)-mediated FA (fatty acid) syn-
thesis [46]. Our study demonstrated that acetate functions 
as an epigenetic metabolite to promote de novo lipid syn-
thesis under hypoxia conditions [47]. Those data broaden 
our scope to explore additional function of lipid metabo-
lism in PDAC development. 

 
AUTOPHAGY, MITOCHONDRIA, AND PANCREAS CAN-
CER 
Classical autophagy is initiated from the formation of a 
membrane-structured autophagosome which transports 
damaged cellular components to the lysosome when cells 
receive stressful stimuli, such as hypoxia, starvation, 
chemotherapy, and radiation. Processed materials in lyso-
somes are degraded or recycled to keep cell homeostasis. 
In tumors, autophagy has an anti- or pro-cancerous func-
tion. Enhanced autophagy is detected in PDAC. Neverthe-
less, opposite evidence shows that elimination of autopha-
gy contributes to PDAC initiation [48]. One interesting 
study found that KRAS disruption augments autophagy in 
PDAC [49]. Moreover, our study revealed that acetylation 
at the K5 residue of lactate dehydrogenase A (LDHA) trig-
gers chaperone-mediated autophagy (CMA) and delivers 
acetylated LDHA to lysosome for degradation, resulting in 
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alteration of intracellular lactate flux and alleviating the 
malignant phenotype of PDAC cells in vivo and in vitro [50]. 
These sophisticated functions of autophagy may explain 
the poor response to chemotherapy and radiotherapy in 
current PDAC treatment.   

Over the past two decades, targeted therapy is one of 
the most important advances in the treatment of patients 
with cancer. However, targeting KRAS in PDAC obtains dis-
appointing results. One explanation may be due to the 
“undruggable” structure of RAS while some recent studies 
reveal promising advance of RAS inhibitor development 
[51]. On the other hand, it has been identified that a small 
population of PDAC cells characterized by stem cell fea-
tures depend on mitochondrial oxidative phosphorylation 
and lose response to KRAS signaling [52]. In addition, as 
mitochondrial respiration is the major resource of intracel-
lular ROS, our study demonstrated that methylation at 
R248 of malate dehydrogenase 1 (MDH1) is essential to 
maintain cellular redox homeostasis in PDAC cells [53]. 
Notably, a novel mechanism that KRAS activation stimu-
lates mitophagy via NIX to sustain PDAC development is 
disclosed [54]. Altogether, these results indicate that tar-
geting mitochondrial respiration and/or KRAS signaling 
would significantly improve treatment efficiency of PDAC 
[51-53]. 

 
METABOLIC REMODLING OF THE PDAC MICROENVI-
RONMENT 
Studies in the recent two decades show that abnormal 
metabolism remodeling in the tumor microenvironment 
largely contributes to the poor survival of patients with 
PDAC. 

Collagens are the most enriched ECM molecules in the 
PDAC tumor microenvironment. PDAC cells could uptake 
cleaved collagen fragments or collagen-derived proline 
(Pro) through a macropinocytosis-dependent or -
independent process (Figure 2). Engulfed collagen frag-
ments are degraded to produce free amino acids in the 
lysosome, which are entering the TCA cycle and are further 
metabolized to supply building blocks to promote PDAC 
cell survival [55]. A further report showed that stimulation 
of epidermal growth factor receptor (EGFR) - Pak enhances 
micropinocytosis in PDAC upon nutrient stress [56]. 

 
Multiple types of stromal cells reside in the PDAC mi-

croenvironment. Among them, pancreatic stellate cells 
(PSCs) are tissue-specific fibroblasts within the pancreas. 
Reciprocal regulation between PSCs and PDAC cells has 
been intensively investigated. PSCs-secreted leukemia in-
hibitory factor (LIF) promotes malignancy of PDAC cells via 
paracrine [57]. Cancer-associated PSCs also secretes ala-
nine (Ala) to feed PDAC cells and fuel TCA cycle, providing 
alternative nutrients for cancer cells and decreasing their 
addiction to glucose as well as other serum-derived nutri-
ents in the austere tumor microenvironment (Figure 2) [8, 
58, 59]. Intriguingly, vitamin D and all-trans retinoic acid 
(ATRA) were reported to revert stellate cells to a quiescent 
state, suppressing matrix remodulation and inhibiting can-
cer cell invasion [60, 61].  

Cancer has been viewed as chronic inflammation with-
out healing. Indeed, various inflammatory cells are in-
volved in tumorigenesis. Tumor-associated macrophages 
(TAMs) have been reported to promote cancer develop-
ment. Interestingly, increased glycolysis is observed in 
TAMs [62]. Furthermore, disruption of PI3Kγ acting as key 
lipid kinase in macrophages significantly abrogates PDAC 
invasion and metastasis by enhancing CD8+ T-cell immuno-
suppression [63]. It is noteworthy that ablation of HIF1a in 
the pancreatic tissue dramatically boosts malignant pro-
gress of KrasG12D-driven PanIN by recruiting a specific sub-
group of B cells to infiltrate into the tumor microenviron-
ment [29].  

Based on these findings, therapeutic strategies against 
the tumor microenvironment are becoming an attractive 
opportunity to beat this lethal disease. 

 
CONCLUSIONS AND PROSPECTS 
To adapt severely metabolic constraints, PDAC cells rely on 
specific metabolic reprogramming, offering potentially 
innovative strategies to treat patients with PDAC in the 
future. It was reported that PDAC cells could be divided 
into three different subtypes according to their metabolic 
profiling, including slow proliferating, glycolytic, and lipo-
genic subtypes (Table 1) [64]. The glycolytic subtype is 
more sensitive to glycolytic and glutamine inhibitors, while 
the lipogenic subtype is more sensitive to inhibitors of lipid 
biosynthesis. The metabolic plasticity greatly contributes to 
cancer heterogeneity. A further study on cancer heteroge-
neity in PDAC revealed that ductal cells are divided into 
two types based on the features of gene expression pro-

Table 1. Subtypes of PDAC based on metabolic features. 

Subtype Metabolic features Therapeutic strategies 

Slow proliferating 
 

Low levels of amino 
acids and carbohydrates 

Glycolytic inhibitors or inhibitors of lipid biosyn-
thesis 

Glycolytic 

 

Metabolites elevated in glycolytic and serine 
pathways, lower levels of metabolites of 

redox homeostasis? 

Glycolytic, Gln inhibitors and ROS-inducing agents 

Lipogenic Enriched for lipid metabolites and TCA cycle 
metabolites 

Inhibitors of lipid biosynthesis 
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files via single-cell RNA-sequence analysis in PDAC [65]. 
Type 1 ductal cells are relative normal and present in both 
normal and cancer tissues, while type 2 ductal cells are 
exclusively found in the PDAC region, furthermore, type 2 
ductal cells also contain seven subpopulations. Meanwhile, 
based on single-cell RNA-sequence analysis stromal cells 
including T cells, macrophages and fibroblasts are highly 
heterogeneous within the tumor microenvironment? [65, 
66]. Therefore, targeting cancer metabolism in combina-
tion with other targeting agents or cytotoxic compounds 
would be promising therapeutic strategies beneficial for 
PDAC patients. 
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