
 

 

 
 

OPEN ACCESS | www.cell-stress.com 191 Cell Stress | AUGUST 2020 | Vol. 4 No. 8 

www.cell-stress.com 

Viewpoint 

ABSTRACT  The incessant interactions between susceptible humans and their 
respective macro/microenvironments registered throughout their lifetime 
result in the ultimate manifestation of individual cancers. With the average 
lifespan exceeding 50 years of age in humans since the beginning of 20th cen-
tury, aging – the “time” factor – has played an ever-increasing role alongside 
host and environmental factors in cancer incidences. Cancer is a genet-
ic/epigenetic disease due to gain-of-function mutations in cancer-causing 
genes (oncogene; OG) and/or loss-of-function mutations in tumor-
suppressing genes (tumor suppressor genes; TSG). In addition to their integral 
relationship with cancer, a timely deployment of specific OG and/or TSG is in 
fact needed for higher organisms like human to cope with respective physio-
logical and pathological conditions. Over the past decade, extensive human 
kidney cancer genomics have been performed and novel mouse models reca-
pitulating human kidney cancer pathobiology have been generated. With new 
genomic, genetic, mechanistic, clinical and therapeutic insights accumulated 
from studying clear cell renal cell carcinoma (ccRCC)–the most common type 
of kidney cancer, we conceived a cancer evolution model built upon the OG-
TSG signaling pair analogous to the electrical circuit breaker (CB) that permits 
necessary signaling output and at the same time prevent detrimental signal-
ing overdrive. Hence, this viewpoint aims at providing a step-by-step mecha-
nistic explanation/illustration concerning how inherent OG-TSG CBs intricate-
ly operate in concert for the organism’s wellbeing; and how somatic muta-
tions, the essential component for genetic adaptability, inadvertently triggers 
a sequential outage of specific sets of CBs that normally function to maintain 
and protect and individual tissue homeostasis. 

 

 
Exploiting the circuit breaker cancer evolution model in 
human clear cell renal cell carcinoma 

 

James J. Hsieh1,* and Emily H. Cheng2,3,4 
1 Molecular Oncology, Department of Medicine, Washington University, St. Louis, MO 63110, USA. 
2 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 
3 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 
4 Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.  
* Corresponding Authors:  
James J. Hsieh, M.D., Ph.D, 660 S. Euclid Avenue, Box 8069, St. Louis, MO 63110, USA; Tel: 314-273-1688; E-mail: Jhsieh@wustl.edu 
 
 

 

 
 
 

INTRODUCTION 
On average a human adult body encompasses fifty trillion 
cells (~5x1013) with a daily turnover of hundred billion cells 
(~1011) within which each contains two copies of ~three 
billion base-pair DNA haploid genome. Approximately, the 
routine maintenance of a healthy human body necessitates 
~1021 DNA base pairs transaction every day. Remarkably, 
despite this astronomical chemical challenge genome in-
tegrity is inherently maintained by sophisticated DNA repli-
cation, proof-reading, and repair mechanisms evolved over 
billion years. However, the precision of DNA transaction in 

multi-cellular complex organisms can only be near-perfect 
to allow finite replication errors needed for genetic adapta-
tion and thereby evolution. Nevertheless, individual cells 
are equipped with intrinsic cell death machineries to as-
sure continuous genome integrity, which works alongside 
with immune system’s surveillance, killing, and removal of 
detected pre-cancer/cancer cells [1-3]. The human genome 
encodes ~20,000 protein coding sequences of which 2-10% 
are cancer-related genes such as oncogenes (OGs) and 
tumor suppressor genes (TSGs) [2, 4]. Notably, these can-
cer-related genes normally participate in key biological 
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Abbreviations: 
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HIF – hypoxia inducible factor; 
OG – oncogene; 
mccRCC – metastatic ccRCC; 
RCC – renal cell carcinoma; 
TSG – tumor suppressor gene; 
VHL – Von-Hippel Lindau. 
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processes such as embryonic development and tissue ho-
meostasis such as MLL (a Trx-G gene) and BMI-1 (a Pc-G 
gene)[5]. In response to imminent or chronic tissue stress-
es such as ischemia tissue injury these “specialty genes” 
are called upon to act appropriately till resolution of re-
spective insults [2, 5-6]. Hence, we envisioned that specific 
oncogene and tumor suppressor gene pairs (OG-TSG) could 
function as regulatory modules similar to electrical circuit 
breakers (CBs) that mitigate power/signal overload [5]. 
Additionally, these OG-TSG CBs can interconnect to pro-
vide additional layers of regulation and safety that operate 
in a tissue context-dependent manner, which helps explain 
the tissue-type specific propensity of dysfunction in certain 
OG and TSG [7]. With these basic principles, hereafter we 
will begin to explore this hypothetic OG-TSG CB cancer 
evolution model inspired when we studied clear cell renal 
cell carcinoma (ccRCC) in human, mouse, and cell line 
models. 
 
Kidney cancer  
Kidney cancer accounts for ~2% of all cancer diagnoses 
(~74,000; ~300,000) and deaths (~15,000; ~134,000) annu-
ally at the United States and the World, respectively[8, 9]. 
Renal cell carcinoma (RCC) encompasses a large heteroge-
neous group of cancers derived from renal tubular epithe-
lial cells, which encompasses >10 molecular and histo-
pathological subtypes [10]. RCC major subtypes (≥5%) in-
clude clear cell RCC (ccRCC) at ~75%, papillary RCC (pRCC) 
at ~15%, and chromophobe RCC (chRCC) at ~5% [11]. Ac-
cordingly, metastatic ccRCC (mccRCC) accounts for most of 
the kidney cancer mortality [12]. Although mccRCC is re-
fractory to conventional chemotherapy, marked therapeu-
tic advances have been made over the past 15 years, cul-
minating in 15 FDA-approved agents for mccRCC [9]. These 
agents exploit seven molecular mechanisms: (1) IL-2 and a-

Interferon are cytokines; (2) Sorafenib, Sunitinib, Pazo-
panib, Axitinib and Bevacizumab inhibit VEGF pathway; (3) 
Cabozantinib inhibits VEGFR2, cMET and AXL; (4) Len-
vatinib inhibits VEGFR2 and FGFR; (5) Everolimus and 
Temsirolimus are inhibitors of mTORC1; (6) Nivolumab, 
Avelumab, and Pembrolizumab are PD-1/L1 blocking anti-
bodies; and (7) Ipilimumab is an anti-CTLA-4 antibody [13]. 
However, mccRCC remains lethal and treatment response 
is highly heterogeneous among patients upon individual 
treatments [14], likely due to tumor genomic and host ge-
netic heterogeneities. 

 
The genomics of ccRCC 
Modern multi-omics of human ccRCC consisting of ge-
nomics, transcriptomics, proteomics and metabolomics not 
only highlights its profound inter-/intra-tumor heterogene-
ity but also showcases underline cancer evolution con-
straints that could be exploit as therapeutic biomarkers 
[14-25]. The most conspicuous genomic event in ccRCC is 
the near universal (>90%) one copy loss of the short arm of 
Chromosome 3 [26]. The most striking genomic discovery 
in ccRCC is the extreme chromosomal proximity of the four 
most prevalently mutated kidney cancer TSGs—VHL 

(~80%), PBRM1 (29-46%), SETD2 (8-30%), and BAP1 (6-
19%)—spanning chromosome 3p21-3p25 [6, 27-28]. Hence, 
one genetic event incurred the 3p loss in renal epithelial 
cells simultaneously creates a haplo-insufficient state of 
four critical ccRCC TSGs. Remarkably, 3p loss represents 
the first somatic driver event in sporadic ccRCC, which 
takes place during adolescence that predates the most 
common second somatic event by ~20 years, i.e., the ge-
netic/epigenetic inaction of the VHL gene, giving rise to the 
most recent common ancestor (MRCA) within a given 
ccRCC patient whose ccRCC is eventually diagnosed at 60 
years of age [29]. Notably, unlike most cancers that are 
initiated by gain-of-function mutations in OGs ccRCC re-
sults from sequential losses of TSGs [6]. 
 
The shared genetic events of hereditary and sporadic in 
human ccRCC  
The Von-Hippel Lindau (VHL) disease, an autosomal domi-
nant hereditary cancer syndrome caused by the loss-of-
function germline mutation in the VHL gene [30], is charac-
terized by the development of hemangioblastoma of the 
central nervous system and retina, ccRCC, and pheochro-
mocytoma [31-32]. It was later demonstrated that VHL is 
inactivated in ~90% of sporadic ccRCC through either ge-
netic mutation or promoter methylation [9, 33]. Biallelic 
inactivation of the TSG VHL is therefore established as an 
early event in both germline mutant VHL-associated and 
sporadic ccRCC [6].  

 

DISCUSSION 
The VHL-HIF-hypoxia-metabolism  
Studies on oxygen sensing led to the discovery of Hypoxia-
Inducible Factors (HIFs) [34]. VHL is a multipurpose adaptor 
protein and chiefly effects as the substrate recognition 
module of the VCB (VHL-Elongin C-Elongin B)-Cul2 E3 ligase 
which ubiquitinates HIF-1  and HIF-2  [35]. Under normal 

oxygen conditions, HIF1/2  is prolyl hydroxylated by EGLN, 

ubiquitinated by VCB-Cul2-VHL, and rapidly degraded by 
the 26S Proteasome [36]; whereas under low oxygen con-
ditions such as high altitude or ischemia, HIF  is stabilized 

to initiate a myriad of hypoxia-specific transcriptional pro-
grams [34, 36-38]. The pathologic loss of VHL in ccRCC re-
sults in persistently elevated HIFs accounting for the ob-
served clear cell morphology and highly vascularity [11, 12, 
38-40]. However, the long latency (>30 years) for VHL syn-
drome patients to develop ccRCC [31] and the insufficiency 
of VHL loss alone to induce ccRCC in mice [41] argue for 
the necessity of cooperative events [42]. 
 
ccRCC signifies prevalent loss-of-function mutations in 
TSGs at the renal epithelium  
Unlike many cancers that originate from gain-of-function 
mutations in OGs such as EGFR and RAS, ccRCC manifests 
with prevalent loss-of-function mutations in TSGs, making 
the development of predictive biomarkers for individual 
targeted therapies and/or immunotherapies extremely 
challenging. Nevertheless, new therapeutic modalities, 
novel genetically engineered mouse models, clinically rele-
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vant patient-derived cell line/xenograft models, and out-
come-based biomarker studies altogether have begun to 
shed light on how these seemingly distinct research areas 
are in fact exquisitely interconnected [43]. Here, we wish 
to update essential findings in ccRCC, and present a novel 
concept of “Interconnected OG-TSG Circuit Breaker Cancer 
Evolution Model in ccRCC”. 
 
The first oncogenic driver event in ccRCC  
In hereditary VHL-loss ccRCC, the first genetic event is the 
inheritance of a loss-of-function copy of the VHL gene; 
whereas in sporadic ccRCC, the first genetic event is the 
loss of chromosome 3p. The ensuing epi/genetic event in 
developing both kinds of ccRCC converges on the complete 
inactivation of VHL [6]. Hence, generally speaking ccRCC is 
a VHL-loss kidney cancer, and complete VHL inactivation is 
the quintessential first functional/genetic truncal event [7]. 
 

The exemplary interconnected VHL/HIF/PBRM1/TSC/ 
MTORC1 CBs in ccRCC  
Among the three newly identified 3p21 TSGs in ccRCC, 
PBRM1 is best studied in molecular mechanisms, mouse 
models, and human clinical outcomes [22, 28, 32, 42, 44-
48]. Accordingly, we will further elaborate recent key re-
search findings on PBRM1 and attempt to reconcile how 
and why PBRM1 loss in ccRCC impact the efficacy of select 
targeted therapies and immune checkpoint inhibitors.  
 

PBRM1 
The SWI/SNF are macromolecular protein complexes that 
utilize ATP to mobilize nucleosome, modulate chromatin 
structure, and thereby regulate central cellular, develop-
mental and oncogenic processes [49-50]. They come with 
many flavors due to their interchangeable, dynamic com-
positions in nature [51]. Notably, mutations of individual 
SWI/SNF subunits are detected and exhibit preferential 
enrichment in ~20% human cancer of various types [52]. 
PBRM1 is the defining component of the PBAF complex 
and is most commonly mutated in ccRCC [53]. Remarkably, 
the in vivo tumor suppressor role of PBRM1 in ccRCC was 
confirmed and reported in 2017 by three independent 
laboratories using three different genetically engineered 
mouse models where combined losses of VHL and PBRM1 
lead to multifocal ccRCC in mouse kidney, whereas individ-
ual losses did not [42, 54-55]. How PBRM1 loss might have 
contributed to the ccRCC pathogenesis will be discussed 
hereafter. 

 
The hypoxia scenario: the normal physiology 
Upon tissue injury, insufficient blood supply incurs, thereby 
resulting in low oxygen tension, which in turn stabilizes 
HIF-1 to act accordingly (Fig. 1A), i.e. inhibition of mito-
chondria oxidative phosphorylation and promotion of re-
vascularization. Once the tissue repair is complete, normal 
oxygen tension is re-established, HIF-1 is prolyl hydroxylat-
ed which is recognized by VHL, ubiquitinated by VCB-Cullin 
2 E3 ligase, and degraded by 26S proteasome, and tissue 
returns to a normal homeostatic state [34, 36]. 
The VHL loss scenario: inactivation of one CB 

The complete pathologic loss of VHL due to chromosome 
3p loss, mutations, and/or promoter methylation results in 
the aberrant abundance of HIF-1 protein, resulting in a 
hypoxia-like molecular response despite normal oxygen 
tension, i.e. pseudohypoxia. Under this scenario, the VHL 
loss inactivates the first ccRCC CB “VHL-HIF” (Fig. 1B) pre-
sent in the renal cortex. In vivo mouse model studies 
demonstrated that the activation of pseudohypoxia pro-
gram is evident when comparing the twelve week old nor-
mal appearing mouse renal cortex with kidney specific 
deletion of Vhl to that of wild-type control [42]. 

 
The VHL/PBRM1 loss scenario: inactivation of two CBs  
The singular loss of VHL is insufficient in initiating ccRCC, 
which is recognized in both mouse and human VHL loss 
models [56]. The ensuing complete loss of PBRM1 inacti-
vates the second CB “HIF-PBRM1-STAT” in the renal cortex 
(Fig. 1C), leading to the increased transcription output of 
HIF and STAT targets [42]. Of note, the singular loss of 
PBRM1 did not activate HIF or STAT targets [42]. It is 
known that HIF-1 and STAT3 cooperate to activate the ex-
pression of HIF-1 targets [57-58]. Consequently, the 
dysregulated interplay between HIF and STAT upon com-
bined losses of VHL and PBRM1 creates a feed-forward 
amplification loop that maximizes downstream gene ex-
pression [42]. The role of PBRM1 in restricting HIF signaling 
output was independently reported using cell-based assays 
[59]. Under this scenario, the subsequent PBRM1 loss inac-
tivates the second ccRCC CB “HIF-PBRM1-STAT”. 

 
The VHL/PBRM1/TSC loss scenario: inactivation of three 
CBs 
Despite the fact that HIF/STAT signaling overdrive was evi-
dent in the twelve week-old Vhl-/-;Pbrm1-/- mouse kidney, 
the long latency (ten months) and the incomplete pene-
trance (~50%) to the ultimate development of multifocal 
ccRCC in this model suggested that additional OG-TSG CBs 
could be at play [42]. To this end, gene expression and 
immunohistochemical analyses comparing twelve month-
old ccRCC tumors to twelve week-old renal cortices of Vhl-
/-;Pbrm1-/- mice detected hyperactive mTORC1 signaling 
in tumors in addition to the demonstrated pre-existing 
activation of HIF/STAT and suppression of mitochondrial 
pathways [42]. Hence, the prevention of aberrant activa-
tion of mTORC1 pathway probably constitutes the third 
ccRCC CB. Of note, mTORC1 serves as the central nutrition 
state integrator of the cell and its main control is conferred 
by the TSG TSC1/2 complex [60]. Remarkably, loss-of-
function mutations in TSC1 or TSC2 (~10%), and gain-of-
function mutations in MTOR (~6%) are common in ccRCC 
and correlated with rapalog response in therapeutic outlier 
studies; and Tsc1 and Tsc2 expression levels are down-
regulated in Vhl-/-;Pbrm1-/- mouse ccRCC tumors [17, 22, 
42, 61-63]. Accordingly, the third CB in place to prevent 
ccRCC pathogenesis after losses of VHL and PBRM1 is “TSC-
mTORC1” (Fig. 1D). Of note, the inactivation of the 
“PTEN/PI3K” CB which functions upstream of the “TSC-
mTORC1” CB is observed in 7% of ccRCC [22]. Mechanisti-
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cally, the inactivation of the first “VHL-HIF” and the second 
“HIF-PBRM1-STAT” CBs and the resulting HIF output over-
drive apparently activates Redd1, a known HIF1 target and 
an activator of TSC2 [42, 64], which positions “TSC-
mTORC1’ as the preferred third CB after the losses of VHL 
and PBRM1 [56]. 
 
A hypothetical immunosurveillance CB in ccRCC 
As STATs are key transcription factors in cancer inflamma-
tion and immunity [65], the activation of STAT pathway 
due to the combined loss of VHL and PBRM1 could render 

the resulting tumors prone to immune regulation [42]. 
Recent approvals of single agent Nivolumab (anti-PD-1 
antibody) as second line and the combination of Ipili-
mumab (anti-CTLA-4 antibody) and Nivolumab as first line 
treatment options for ccRCC have dramatically altered the 
therapeutic landscape of metastatic kidney cancer [66-67]. 
Intriguingly, a recent paper identified PBRM1 loss as a po-
tential genomic biomarker for the treatment response to 
these immune checkpoint inhibitors [68-69] and others 
suggested otherwise [70-71], which needs further valida-
tion facing the daunting intratumor heterogeneity of ccRCC. 

FIGURE 1: The interconnected OG-TSG CBs operate in renal epithelium to control signaling output and prevent tumorigenesis. (A) Depicts 
the physiological employment of the inherent VHL-HIF CB to gauge tissue response to low oxygen tension, and (B-D) examine how the se-
quential losses of a pre-determined set of “OG-TSG CBs” once the first CB is inactivated result in ccRCC. 
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Nevertheless, these mechanistic, mouse, and human ccRCC 
studies support a working hypothesis in which the dis-
armed “STAT-PD-1” immunosurveillance CB can be reac-
tivated through biological means such as anti-PD-1/L1 an-
tibodies for therapeutic exploitation (Fig. 1D). This might 
be one of the important rationales of why immunotherapy 
has activity in ccRCC, a tumor generally associated with low 
tumor mutation burden and a lack of microsatellite insta-
bility. 
 

FUTURE DIRECTION 
Integrated applied pathology to exploit functional pa-
thology in advancing precision cancer therapeutics 
The holy grail of contemporary cancer research is to be 
able to predict not only how an individual patient may 
benefit from currently available front-line therapies, but 
also how an individual tumor’s molecular identity could 
potentially inform resistance mechanisms and thereby help 
implement a novel, tailored combination therapeutic strat-
egy to greatly improve clinical outcome. One of the most 
challenging issues concerning metastatic ccRCC care is the 
known conspicuous intra-tumor and inter-tumor hetero-
geneity, which probably contributes to clinical outcomes. 
Nevertheless, like all individual human subjects develop 
from the same two copies of genome, all cancer cells 
evolve from the same set of genetic materials carried in 
the host cell. Hence, we hypothesize that intrinsic pro-
gramming principles are in place to guide embryonic de-
velopment, maintain tissue homeostasis, and restrict tu-
morigenesis [7, 14]. To visualize this third-generation hy-
pothesis, we propose a “OG-TSG CB Constrained Braided 
Cancer River” model by integrating our first-generation 
“Braided River Model” and second-generation “CB Model” 
to further expound on this carcinogenic principle inspired 
from studying ccRCC, which might be applicable to addi-
tional cancer types. 
 
The OG-TSG CB constrained braided cancer river model 
Despite conspicuous tumor heterogeneity, long-term clini-

cal benefits on single agent targeted therapy are not un-
commonly observed with metastatic ccRCC patients, impli-
cating underlying cancer evolutionary constraints that 
force nonrandom sequences of parallel 
gene/pathway/function/phenotype convergences (Fig. 2). 
Indeed, our multi-region genomics study performed on 
ccRCC therapeutic outliers treated with single agent 
mTORC1 inhibitors rendered invaluable insights concerning 
this hypothesis [62]. We first proposed a braided cancer 
river model to help depict individual cancer evolution and 
advise therapeutic options.[7] The “Braided River” model 
highlights parallel and convergent events occurring 
throughout individual ccRCC tumorigenesis. It illustrates 
the stepwise, ordered accumulation of different driver 
mutations in kidney cancer development to acquire cancer 
hallmarks. A late chaotic evolutionary time point was in-
corporated to explain the limited effectiveness of com-
bined targeted therapies in highly aggressive cancers, 
when “speedy” driver mutations quickly accumulate to 
enable extreme subclonal evolution. With the new concept 
of interconnected OG-TSG CBs, we propose a “CB-
Constrained Braided Cancer River” model in which inher-
ent context-dependent OG-TSG CBs are positioned at the 
gene/pathway/function/phenotype convergent points (Fig. 
2). In other words, CBs function like dams to limit flow and 
prevent flooding. This model stipulates that each individual 
cancer river initiates with a truncal driver event, and once 
that occurs the ensuing branching events could be predict-
ed. Accordingly, restoring a pre-determined, preferred set 
of CBs at once could offer effective measures and guide 
trial designs. 

 
 
 
 
 
 
 

FIGURE 2. The diagram depicts the “OG-TSG CB Constrained Braided Cancer River” model to explain the non-randomness of cancer evolution 
and devise personalized cancer treatment strategy. 
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