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ABSTRACT Nuclear factor of activated T cells 5 (NFAT5)
is a transcription factor within the Rel family, primarily
recognized for its role in cellular adaptation to osmotic
stress, particularly in hypertonic and hyperosmotic envi-
ronments. Beyond osmotic regulation, NFAT5 responds
to diverse stimuli, including cytokines, growth factors,
oxidative stress, and microbial signals. This versatility
enables NFAT5 to regulate essential cellular processes
such as proliferation, survival, migration, and vascular
remodelling. In the immune system, NFATS modulates
the function of monocytes, macrophages, astrocytes,
microglia, and T cells, contributing to immune homeo-
stasis and inflammatory responses. Dysregulation of
NFATb activity is implicated in various pathological con-
ditions, including autoimmune diseases, cancer, and
cardiovascular disorders, largely due to its ability to con-
trol genes involved in inflammatory and immune path-
ways under both isotonic and hypertonic conditions.
Recent studies have unveiled new regulatory mecha-
nisms, including interactions with non-coding RNAs, of-
fering deeper insights into the functional landscape of
NFAT5 and its therapeutic potential. This review delves
into the multifaceted roles of NFAT5 in health and dis-
ease, emphasizing its emerging importance as a prom-
ising therapeutic target.

INTRODUCTION

Cellhomeostasis is maintained by numerous intrinsic and extrin-
sic factors, among which transcription factors (TFs) play a cru-
cialrole in driving cell activation or inhibition. The Rel/NFxB fam-
ily includes a diverse group of TFs, such as nuclear factor kappa
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Abbreviatons:

AMD - age-related macular degeneration; APC - antigen-present-
ing cell; BBB - blood-brain barrier; CLL - chronic lymphocytic leu-
kaemia; CNS - central nervous system; DBD - DNA-binding domain;
DED - dry eye disease; DMD - Duchenne muscular dystrophy; DN
- diabetic nephropathy; DR - diabetic retinopathy; EGFR - epider-
mal growth factor receptor; eNOS - endothelial NO synthase; ETBF
- Enterotoxigenic Bacteroides fragilis; FLS - fibroblast-like synovio-
cytes; GBM - glioblastoma multiforme; HCC - hepatocellular carci-
noma; HBV - hepatitis B virus; HCV - hepatitis C virus; HUVEC - hu-
man umbilical vein endothelial cells; ICH - intracerebral haemor-
rhage; INOS - inducible NO synthase; LN - lupus nephritis; LPS - lip-
opolysaccharide; LSCC - laryngeal squamous cell carcinoma;
LUAD - lung adenocarcinoma; LUSC - lung squamous cell carci-
noma; mBregs - memory B regulatory cells; MCD - medullary col-
lecting duct; MG - myasthenia gravis; NLS - nuclear localization sig-
nal; NO - nitric oxide; NP - nucleus pulposus; NSCLC - non-small
cell lung cancer; OA - osteoarthritis; ODS - oral squamous cell car-
cinoma; ORE - osmotic response element; PBMCs - peripheral
blood mononuclear cells; RA - rheumatoid arthritis; RGC - retinal
ganglion cell; RPE - retinal pigment epithelial cells; ROS - reactive
oxygen species, SCTR - secretin receptor; SLE - systemic lupus er-
ythematosus; SMIT - sodium-myo-inositol transporter; T1DM -
Type 1 Diabetes mellitus, T2DM - Type 2 Diabetes mellitus; TF -
transcription factor;, TLR - Toll-like receptor, VSMCs - vascular
smooth muscle cells.

B (NFxB) and nuclear factor of activated T cells (NFAT1-5).
Members of this family share key biochemical features, includ-
ing a DNA recognition site, a calcineurin-binding site, and a cal-
cium-dependent activation domain. Although NFAT5 belongs
to the Rel family, it stands out due to its lack of a calcium-
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dependent activation site, resulting in a distinct functional pro-
file compared to other members. NFAT5, also known as tonicity
enhancer binding protein (TonEBP), plays a pivotal role in regu-
lating cellular homeostasis during osmotic stress. It was initially
identified in kidney medullary cells, where it controls the dra-
matic solute fluctuations essential for the organ osmoregulatory
function. Interestingly, NFAT5 activation is not limited to hyper-
tonic stress; it can also be triggered by isotonic stimuli, suggest-
ing that this TF fulfils diverse functions depending on the cellular
environment. Thus, NFAT5 is characterized as both a stress-re-
sponsive protein and a key regulator of hypertonic stress adap-
tation [1].

ROLE OF NFATS5 IN HEALTH

Molecular structure and DNA binding

NFAT5 was cloned in 1999, and its N-terminus was found to
share significant similarity with the Rel-like DNA binding domain
(DBD) of the NFAT TF family. However, unlike other NFAT
isoforms, NFAT5 lacks the highly conserved N-terminal region
that serves as a calcineurin-binding site [2]. Additionally, its DBD
differs from that of NFAT1-4, preventing cooperation with
Fos/Jun at NFAT: activator protein-1 (AP-1) composite sites [3].
Despite this structural divergence, pharmacological inhibition of
AP-1 reduces NaCl-induced NFATS expression in retinal pig-
ment epithelial (RPE) cells, suggesting that AP-1 partially medi-
ates this response [4]. This could be explained by the fact that,
while NFAT1-4 recognize a broader consensus sequence
(GGAAA), NFAT5 binds to a more specific motif (TGGAAA). This
partial overlap may allow shared gene regulation under specific
conditions, despite differences in their DBDs and regulatory
pathways [3].

In response to hypertonic stress, cells synthesize osmopro-
tective molecules such as myo-inositol, betaine, taurine, and sor-
bitol to counteract the harmful effects of hyperosmolarity. The
transport and synthesis of these molecules require specific pro-
teins, including aldose reductase (AR), which converts glucose
into sorbitol; the betaine transporter (BGT 1); the sodium-myo-in-
ositol transporter (SMIT); and the taurine transporter (TauT). Be-
yond osmoprotection, NFAT5 also regulates the expression of
innate immune cytokines such as tumor necrosis factor-alpha
(TNF-o) and lymphotoxin-g (LTp), contributing to T cell activa-
tion [5]. Figure 1

Upstream in the NFAT5 signalling cascade, Brx (protein ki-
nase A-anchoring protein 13 (AKAP13)) activates specific G
proteins via its guanine nucleotide exchange factor domains, fa-
cilitating the recruitment of c-Jun N-terminal kinase (JNK)-inter-
acting protein 4 (JIP4). This, in turn, stimulates the p38 activation
cascade necessary for NFAT5 expression [6]. NFAT5 activation
is a highly regulated process involving multiple signalling path-
ways, including p38, Fyn, protein kinase A (PKA), ataxia telangi-
ectasia-mutated kinase (ATM), phospholipase C gamma 1
(PLCy 1), and protein kinase C o (PKCal, acting via extracellular
signal-regulated kinase (ERK1/2) [7-11]. Interestingly, while p38
plays a central role in NFAT5 activation, its inactivation occurs
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independently of its cognate phosphatase, mitogen-activated
phosphokinase (MAPK) phosphatase-1 (MKP-1) [12]. Moreover,
Rac1can activate NFAT5 through p38-independent PLCv 1 sig-
nalling [13], highlighting the existence of alternative activation
routes. High NaCl concentrations further enhance NFAT5 acti-
vation by stimulating PKA, phosphatidylinositol-3-phosphate ki-
nase (PI3K), and protein kinase B (AKT 1), which phosphorylate
glycogen synthase kinase-3-8-S9 (GSK-3p-S9). This phosphor-
ylation neutralizes the inhibitory effect of GSK-33 on NFAT5, fur-
ther promoting its activity [14].

NFAT5 continuously shuttles between the cytoplasm and
nucleus in response to tonicity changes, a process regulated by
its nuclear localization signal (NLS) and nuclear export se-
guence (NES) in the N-terminus [15]. Nuclear import occurs via
the nuclear pore complex through karyopherin g1 (KPNB1),
which interacts with the NLS, while nuclear export is facilitated
by the export-T (XPOT) protein [16]. Additionally, nucleoporin
88 (Nup88) increases in response to hypertonic stress, retaining
NFAT5 in the nucleus and enhancing the transcription of osmo-
protective genes in kidney cells [17]. A key contact site for DNA
binding, NFAT5-T298, is crucial for nuclear translocation, func-
tioning independently of Nup88 [18]. Under osmotic stress,
NFATS5 isoform a (NFAT5a) can enter the nucleus despite its li-
pid anchoring sites, a process modulated by reversible pal-
mitoylation [19]. In HEK293 cells, rapid nuclear translocation de-
pends on cyclin-dependent kinase-5 (CDK5) activity, which
phosphorylates NFAT5 at Thr135 [20]. Structurally, NFAT5 pos-
sesses a transcriptional activation domain (TAD) inits C-terminal
region, which is activated upon hypertonic exposure in a PKA-
dependent but cAMP-independent manner [21, 22]. Addition-
ally, integrin o« 181 plays a crucial role in NFAT5 activation within
inner medullary collecting duct (MCD) cells, underscoring itsim-
portance in renal development [23].

As a TF, NFAT5 binds to conserved sequences to regulate
gene expression, promoting the transcription of both mRNA and
protein. Its 5~ TGGAAA-3' motif is relatively short and widely dis-
tributed throughout the genome, enabling NFAT5 to target a
broad array of genes. This extensive regulatory network high-
lights NFATS's central role in cellular stress responses, immune
modulation, and potentially, disease pathogenesis.

Activation pathways

Osmotic stimuli

Osmotic regulation is fundamental for maintaining cellular, tis-
sue, and organ function, ensuring overall homeostasis. In fluctu-
ating osmotic environments, cells must adapt to prevent dam-
age from excessive swelling or shrinking. NFAT5 plays a central
role in this adaptive process by responding to changes in osmo-
lality, particularly under hypertonic conditions. To counteract
osmotic stress, cells upregulate osmocompensatory genes that
encode proteins responsible for increasing intracellular osmo-
lytes. Among these, NFATS regulates key players such as urea
transporter 1 (UTA-1), which facilitates urea transport and is in-
fluenced by vasopressin, HSP70-2, a molecular chaperone that
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Osmotic stress

Inflammasome /' IL-180

Pro-IL-1BCDO
Pro-IL-18C DO
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[ COX2, VEGFA, FGF, NGF, IL1B, TNF-a, CCL2, CXCL8 ]

[ AR, SMIT, TauT, BGT1, HSP70, AQP1, AQPZ2, AQPS, ]

FIGURE 1 @ NFAT5 pathway. Osmotic stress promotes the activation of protein kinase A-anchoring protein 13 (BRX) and G proteins to stimulate c-Jun
N-terminal kinase (JNK)-interacting protein 4 (JIP4), which triggers the NFAT5 phosphorylation (NFAT5p) through p38 MAPK. Nuclear translocation of
NFAT5p induces the transcription of aldose reductase (AR), sodium-myo-inositol transporter (SMIT), taurine transporter (TauT), betaine transporter (BGT1),
heat shock protein 70 (HSP70), cyclooxygenase-2 (COX2), vascularendothelial growth factor A (VEGF-A), fibroblast growth factor (FGF), nerve growth factor
(NGF), aquaporin (AQP)-1, 2 and 5, interleukin-1 beta (IL-1p), tumor necrosis factor alpha (TNF-a), chemokine (CC motif) ligand 2 (CCL2), chemokine (CXC
motif) ligand 8 (CXCL8) among others. Moreover, NFAT5p nuclear translocation induces activation of the NLRP3 inflammasome complex leading to the

maturation of IL-18 and IL-18 and the expression of nuclear factor-kB (NF-xB) and hypoxia-inducible factor (HIF)-1«. Figure created with BioRender.

protects against apoptosis [24, 25], and TauT, which is involved
in taurine transport [26].

Unlike NFAT1-4, which require calcium-dependent activa-
tion, NFAT5 responds directly to hypertonic stress by translocat-
ing to the nucleus, where it binds specific promoter sequences
suchasthe -76 GGAAA consensus site and the k3 site within the
TNF promoter in murine fibroblasts [27]. This activation under-
scores its role in driving proinflammatory responses under hy-
perosmotic conditions. Additionally, high sodium chloride levels
stabilize NFATSE mRNA viaits 5'-UTR, leading to a rapid yet tran-
sient increase in protein synthesis, as observed in mouse MCD
cells [28]. Increased intracellular ionic strength further enhances
the stability of the NFAT5 N-terminal domain, promoting its inter-
action with the prosurvival high mobility group protein HMGI-C,
which improves cell resilience to hypertonic stress [29]. In this
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context, exon 8 of NFATS appears crucial for promoting TNF-o
expression under these conditions [30].

At the transcriptional level, NFAT5 collaborates with other
stress response pathways. For instance, it shares a common pro-
moter site with Nrf2 in the multiple stress response region of the
5r-flanking region of the AR gene, demonstrating synergistic
activity in HepG2 cells. This interaction, however, is abolished by
c-Jun activity [31]. Furthermore, NFAT5 contributes to meta-
bolic adaptations under osmotic stress, as evidenced by its role
in upregulating CYP2E1 [32] and CYP3A [33], two hepatic en-
zymes whose expression is influenced by plasma osmolality. In
neuropathic rat models, endothelin-1 (ET1) activates NFATS
through the ET-1 receptor A (ETAR) [34].

NFAT5 also regulates inflammatory mediators in response
to hypertonic stress. For example, it is required for COX-2 induc-
tion, as NFAT5 gene disruption prevents its upregulation under
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hyperosmotic conditions [35]. In RPE cells, NFAT5 expression is
driven by autocrine purinergic signalling, which involves ATP re-
lease, nucleoside transporter-mediated adenosine release, and
the activation of P2X7, P2Y1, P2Y2, and adenosine A1 receptors
[36]. Additionally, NFAT5 modulates glucagon-like peptide-1
(GLP-1) secretion in response to sodium levels, as inhibition of
NFAT5 in human L-cells blocks the effect of gastrin-releasing
peptide (GRP) on sodium-induced GLP-1 upregulation [37].
NFATS5 is implicated in nephrogenic diabetes insipidus by con-
trolling the expression of critical genes involved in renal water
reabsorption and urine concentration [38]. Metalloproteinase-
dependent activation of the epidermal growth factor receptor
(EGFR) enhances NFAT5 activity under hypertonic conditions
[39]. Additionally, high sodium chloride environments induce
reactive oxygen species (ROS)-dependent NFATS5 transactiva-
tion, increasing BGT1 mRNA levels in human embryonic kidney
cells [40].

Evidence also suggests that aquaporin (AQP)2 expression
isinhibited in the epithelial cells of the renal collecting tubules in
transgenic mice overexpressing a dominant-negative form of
NFATS5 [41], indicating that NFAT5 directly regulates AQP2, at
least in mouse kidney tissue [42]. Similarly, AQP1 and AQP5 ex-
pression in nucleus pulposus (NP) cells depends on NFAT5 un-
der hyperosmotic conditions [43]. Interestingly, NFxB acts as a
transcriptional repressor of AQP2, with its p65, p50, and p52
subunits binding the first 2.1 kbp of the AQP2 promoter under
isotonic conditions [44]. NFAT5 further regulates AQP1 expres-
sion in inner renal medullary cells [45] and AQP4 expression in
astrocytes [46] from hyperosmotic-injured rat hippocampi by
binding to a promoter site located between -49 and -38 bp of the
AQP4 gene [47].

Thus, NFAT5 not only controls osmolyte regulation in re-
sponse to hyperosmotic stress but also modulates genes in-
volved in water transport and inflammation, reinforcing its role
as a key transcriptional regulator in osmotic adaptation and cel-
lular homeostasis.

Non-osmotic stimuli
Beyond osmotic stress, NFAT5 can be activated by proinflam-
matory cytokines. These cytokines are among the most exten-
sively studied activators of NFAT5 during inflammatory pro-
cesses. Their involvement suggests that NFATS plays a role in
immune responses and inflammation, in addition to its known
function in adaptation to osmotic stress. Once activated, NFAT5
regulates gene expression related to cellular adaptation, inflam-
mation, and immune responses, positioning it as a key regulator
of inflammatory pathways. For a more detailed review of osmo-
sis-independent stimuli, see Halterman JA [48]. In this context,
SMIT regulated by NFTADS, is also activated in fibroblasts cul-
tured under isotonic conditions depleted of neutral amino acids
[49].

A striking example of NFATS activation in non-osmotic con-
ditions occurs in placental hypoxia, where HIF-1a upregulates
both NFAT5 and HSP70. Notably, NFAT5 reinforces this
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pathway by increasing HSP70 transcription, suggesting a posi-
tive feedback loop [50]. This mechanism has led to the proposal
of NFATS as a biomarker for placental hypoxia and ischemia
[51], further supporting its involvement in preeclampsia [62]. In
trophoblasts, NFAT5 levels increase under high-calcium condi-
tions, linking sodium availability to proangiogenic responses.
This pathway involves osmotic gradients affecting cytoskeletal
signalling, which is crucial for trophoblast function. Inhibiting
Na*/K*-ATPase or activating it with mannitol triggers NFAT5 ac-
tivation, whereas cytoskeletal disruption prevents this response.
These findings suggest that impaired placental salt availability
in preeclampsia could contribute to vascular dysfunction and
systemic complications [63]. For an extensive review of NFAT5
activation see [54].

NFAT5 also plays a protective role in hypoxia-induced cellu-
lar responses. In mouse embryonic fibroblasts (MEFs) exposed
to hypoxia, NFAT5 upregulation leads to the expression of in-
ducible nitric oxide synthase (iNOS), AQP1, and UTA-1, suggest-
ing a role in cellular adaptation under oxygen-deprived condi-
tions [65]. Additionally, NFAT5 mediates endothelial responses
to hypoxia, where it regulates HIF-1o-driven platelet-derived
growth factor B (PDGFB) expression. This protective mecha-
nism may help reduce vascular resistance and pulmonary hy-
pertension, thereby mitigating organ dysfunction [56].

Hyperphosphatemia induces NFAT5 expression, which
subsequently activates the calcium channel ORAl and its activa-
tor stromal interaction molecule (STIM), supporting calcium in-
flux in megakaryocytes [57]. In HepG2 cells, uric acid triggers
the NFAT5-AR axis in an oxidative stress milieu, a mechanismrel-
evant to the pathophysiology of non-alcoholic fatty liver disease
(NAFLD) [58]. Furthermore, macrophages subjected to com-
pressive strain forces upregulate NFATS and proinflammatory
cytokines, underscoring its role in mechanical stress responses,
such as during orthodontic tooth movement [59]. Interestingly,
NFATS5 activation can be modulated pharmacologically. Lithium,
a drug commonly used for bipolar disorder, has contrasting ef-
fects on NFAT5S in renal cells depending on exposure duration.
In short-term isosmotic conditions, lithium activates NFATS via
GSK-3p inhibition, a process dependent on its C-terminal trans-
activation domain. However, prolonged exposure under hyper-
osmotic conditions reduces NFAT5 activity [60].

Sodium levels similarly influence fibroblast growth factor 23
(FGF23) production in osteoblast-like cells. High sodium sup-
presses FGF23, while low sodium increases its synthesis. These
changes inversely correlate with NFAT5S expression, and NFAT5S
deletion impacts multiple genes associated with FGF23 synthe-
sis. This underscores the regulatory role of the NFAT5-FGF23
axis in bone metabolism and related diseases [61]. Hairy and en-
hancer of split-1 (HES1), a Notch signalling effector, is a positive
regulator of NFAT5. Although HES1 is typically recognized as a
transcriptional repressor, it displays a dual role in osmotic re-
sponses. ERK signalling is involved in HES 1 induction, highlight-
ing a crucial link between cellular stress and transcriptional reg-
ulation. This opens new directions for exploring how HES1
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modulates NFAT5 activity, particularly in osmoprotection [62].
Overall, NFAT5 integrates osmotic and non-osmotic cues, serv-
ing as a master regulator of cellular adaptation, metabolic stress
pathways, and immune responses.

Cell homeostasis

Osmoregulation

The kidney is an organ constantly exposed to drastic osmotic
fluctuations, playing a crucial role in maintaining osmotic bal-
ance across bodily systems. In this context, NaClinduces the up-
regulation of both Kir1.1 potassium channels and NFAT5 at both
transcriptional and protein levels in rat kidney medullary thick
ascending limb (mTAL) cells. Additionally, NaCl promotes the
nuclear localization of NFAT5 through ERK-and MAPK-depend-
ent pathways [63]. NFAT5 drives the expression of key osmotic-
regulatory proteins, including AQP2, and its deletion results in
nephrogenic diabetes insipidus [64]. Moreover, increased flow
combined with hyperosmolality enhances ET1 levels in MCD
cells, a process that is reversed by NFAT5 inhibition via rottlerin
or NFAT5 siRNA, highlighting NFAT5's involvement in regulat-
ing renal responses to high-flow, high-osmolality conditions [65].

Atthe molecular level, NFAT5 function relies on its dimeriza-
tion, which is crucial for phosphorylation [66], DNA encircle-
ment, and stabilization of the NFAT5-DNA complex [67]. Under
normal conditions, NFAT5 maintains a nucleocytoplasmic distri-
bution in renal medullary cells. However, during dehydration, it
shifts predominantly to the nucleus, correlating with increased
transcription of SMIT, further supporting its role in osmolyte ac-
cumulation [68]. This nuclear translocation underscores
NFATS's role as a master regulator of renal medullary adaptation,
driving the expression of stress-related proteins such as HSP70-
2 to protect cells from hyperosmotic damage [69].

NFATS expression is also indispensable for the proper de-
velopment of the kidney medulla, ensuring the activation of os-
mocompensatory genes essential for renal function and home-
ostasis [70]. During embryogenesis, Na-K-2Cl cotransporter
type 2 (NKCC2) precedes NFAT5 by establishing medullary hy-
pertonicity, a prerequisite for NFAT5 osmoprotective role [71].
Beyond coordinating organic osmolyte mobilization, NFAT5 in-
duces additional molecules that support hypertonic adaptation,
such as asporin, insulin-like growth factor-binding proteins
(IGFBP-5 and -7), and extracellular lysophospholipase D, each
contributing through distinct osmotic stress pathways [72]. In
MCD cells, NFAT5 promotes cell survival under hypertonic
stress by upregulating RNF183, a member of the RING finger
protein family, reinforcing its role in medullary adaptation [73,
74].

Furthermore, NFAT5 regulates endothelin-1 (ET-1), aninhib-
itor of water and sodium reabsorption in MCD cells, positioning
NFAT5 as a central molecule in maintaining renal sodium home-
ostasis [75]. Serum- and glucocorticoid-inducible kinase-1
(Sgk1), expressed in the renal medulla, is regulated by extracel-
lular tonicity through NFAT5 during dehydration-induced natri-
uretic states [76, 77]. Additionally, NFAT5 coexpresses with the
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secretin receptor (SCTR) in the renal cortex and medulla. SCTR
contains multiple osmotic response elements (ORE) within its
promoter, making its expression NFAT5-dependent [78]. In kid-
ney pathophysiology, NFAT5 expression declines alongside
AQP2 and endothelial NOS (eNOS) in the renal medulla during
acute kidney injury in rodent models, emphasizing the im-
portance of spatiotemporal regulation in renal injury progres-
sion [79]. Interestingly, NFAT5 appears to have a protective role
in ischemia/reperfusion injury in rat kidneys, acting inde-
pendently of HIF-1a [80].

NFATS stands out as a master regulator of kidney gene ex-
pression. Its loss triggers extensive transcriptional changes, af-
fecting over 3000 genes in the renal cortex and more than 5,000
genes in the inner medulla, changes that are associated with re-
nal inflammation and injury-like phenotypes [81]. Moreover, a
genome-wide parametric gene regulatory network analysis,
based on multiomic datasets from seven human kidney sam-
ples with failed injury responses, identified NFAT5 as a key driver
in the transition from healthy to maladaptive repair. This sup-
ports NFAT5 pivotal role in promoting fibrosis and chronic kid-
ney disease progression when normal tissue repair mecha-
nisms fail [82].

Dopamine plays a key role in inhibiting salt reabsorption in
proximal tubule cells of the kidney. Aromatic l-amino acid decar-
boxylase (AAD), the enzyme responsible for dopamine produc-
tion, is upregulated by NFAT5 under hypertonic stress, suggest-
ing an additional layer of NFAT5-mediated control in renal os-
motic homeostasis [83]. Notably, NFAT5 does not regulate the
ADD isoformin neural dopaminergic cell lines, indicating that its
role in dopamine production is kidney-specific, with no appar-
ent involvement in the nervous system through this pathway
(84].

Beyond the kidney, high salt intake increases liver osmolal-
ity, activating NFAT5, which in turn promotes fructose produc-
tion, leptin resistance, and obesity, linking NFAT5 to the patho-
physiology of diabetes mellitus (DM) [85]. In a hypoxic lung
model, NFAT5S ablation increases oxidative phosphorylation
and metabolism-related gene expression compared to wild-
type cells. This identifies NFAT5 as a suppressor of mitochon-
drial respiration, ROS production, and oxidative gene expression,
critical for limiting ROS-dependent arterial resistance in hypoxic
environments [86].

In peripheral tissues, macrophages respond to interstitial so-
dium accumulation by upregulating NFAT5, which binds to the
vascular endothelial growth factor (VEGF)C promoter, promot-
ing its secretion. Blocking this NFAT5-VEGFC axis leads to inter-
stitial hypertonic volume buildup, reduced eNOS expression,
and elevated blood pressure, reinforcing NFATS's role as a key
osmoprotective regulator in salt-sensitive hypertension [87-90].
Italso acts as an osmoprotective factor inretinal pigment epithe-
lial (ARPE-19) cells under hyperosmolar stress, boosting AR and
TauT mRNA expression [91]. Moreover, elevated osmolality en-
hances NFATS expression in hybridoma cells, leading to in-
creased antibody production, highlighting its essential role in
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adaptive immune responses [92]. NFAT5 also extends its regu-
latory influence to calcium handling during dehydration. It con-
trols calcium release-activated calcium channel protein 1
(Orai1), a key component of store-operated calcium entry
(SOCE) in megakaryocytes and platelets, linking NFAT5 to cal-
cium homeostasis and coagulation processes [93, 94].

NFAT5 appears to play a vital role in sodium balance during
the administration of mineralocorticoid receptor antagonists. By
promoting lymphatic sodium drainage, NFAT5 helps prevent
sodium buildup in tissues, a key consideration in conditions like
primary aldosteronism [95]. In NP cells of intervertebral discs,
NFAT5 responds to increased osmolality and intracellular cal-
cium by promoting the expression of AQP2 and COX-2, enhanc-
ing cell viability and reinforcing its role as an osmoprotective fac-
tor in non-renal tissues [96, 97]. Interestingly, this function in NP
cells is independent of primary cilia, suggesting an alternative
regulatory pathway for osmotic adaptation [98]. NFAT5 also
plays arole in the regulation of telomerase, which consists of the
telomerase reverse transcriptase (TERT), the telomerase RNA
component (TERC) and the telomerase-associated protein
(TEP). As the primary transcriptional activator of TERT, NFAT5
may contribute to the protection of hypertonic tissues and cells,
as observed in mouse models. [99].

Cell proliferation, differentiation, and survival

During embryogenesis, NFAT5 is crucial for the development of
the notochord and intervertebral discs, where it regulates extra-
cellular matrix components and notochord phenotypic markers.
It also modulates the sonic hedgehog (Shh) signalling pathway,
further emphasizing its role in tissue patterning and maintaining
structuralintegrity [100]. Additionally, NFAT5 intersects with ma-
jor developmental pathways. Its cooperation with the Wnt sig-
nalling pathway is essential for cardiomyogenesis, underscor-
ing its role in cardiac development [101].

In this context, NFAT5 emerges as a pivotal regulator in var-
jous tissues and pathological states. A notable example is its in-
volvement in colorectal carcinogenesis induced by Enterotoxi-
genic Bacteroides fragilis (ETBF). ETBF promotes the expres-
sion of JmjC domain-containing histone demethylase 2B
(UMJD2B), a critical factor for stem cell maintenance, through
NFATS5 activation, a mechanism that correlates with tumor de-
velopment in the colon [102]. During chondrogenesis, NFAT5
supports cartilage development by regulating the expression of
SRY-box TF 9 (SOX9) under both isotonic [103] and hyperosmo-
lar conditions [104, 105]. In osteoblasts exposed to high sodium
chloride concentrations, NFAT5 induces the expression of oste-
oprotegerin (OPG) gene, which reduces osteoclastogenesis
while promoting osteoblastogenesis. This highlights NFAT5 as
a promising therapeutic target for high salt-induced osteopenia
[106]. Moreover, the activation of NFAT5 by the long noncoding
RNAKCNQ10T1, which acts asa ‘sponge’ for miR-128-3p, inhib-
its osteoclast differentiation in RAW 264.7 cells [107].

In reproductive physiology, NFAT5 supports osmoadapta-
tion in bull spermatozoa, helping these cells withstand osmotic
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stress in the female reproductive tract, a critical factor for sperm
survival and fertility [108]. NFAT5 also promotes granulosa cell
proliferation in the ovaries by regulating key pathways involving
Wnt, g-catenin, and Bcl2, suggesting its involvement in ovarian
follicle development and function [109]. In muscle develop-
ment, NFAT5 regulates myogenesis through its target gene
Cyr61 (connective tissue growth factor), which is essential for
myoblast migration and differentiation [110]. NFAT5 directly
binds to intronic regions of the smooth muscle a-actin (a-SMA)
gene, driving smooth muscle differentiation, highlighting its in-
fluence in muscle tissue formation and repair [111]. B lympho-
cytes exhibit a biphasic response to osmotic changes. Initially,
hypertonicity increases B-cell activation and differentiation,
downregulating PAX5 and upregulating CD138. However, in
the second phase, cell death increases, and B-cell differentiation
isreduced [112].

Additionally, NFAT5 directly promotes the expression of the
L-type calcium channel gene Cacnalc by binding to its con-
served TGGAAGCGTTC site, regulating cardiomyocyte matura-
tion and cardiac electrophysiology [113]. The Wnt canonical
signalling pathway is abolished in more differentiated intestinal
cells by the presence of NFAT5, through inhibition of the mam-
malian target of rapamycin (MTORC1)/Notch signalling path-
way [114, 115]. In neonatal mouse keratinocytes, NFAT5 ex-
pression is minimal, accompanied by low levels of matrix remod-
elling enzymes such as metalloproteinase-3 (MMP3) and kal-
likrein-related peptidase 7 (Klk7). However, in adult basal
keratinocytes, NFATS expression increases markedly, suggest-
ing a regulatory role in epidermal matrix protease expression
necessary for skin maturation and maintenance [116]

NFATS5 also plays a crucial role in the NLRP3 inflammasome
activity in RPE cells exposed to hyperosmotic conditions [118].
Furthermore, NFAT5 is overexpressed in ARPE-19 cells under
similar stress, promoting their survival [119]. These findings sug-
gest that NFAT5 plays a dual role in the retina, balancing be-
tween cell protection and potential contribution to pathological
processes, as previously discussed. Additionally, hyperglyce-
mic hyperosmolality promotes angiogenesis and retinopathy
through NFATS5 activation in dermal microvascular cells [35].

Moreover, NFATS is implicated in corneal epithelial cell re-
pair and nerve regeneration. Cyclosporine A triggers NFAT5 nu-
clear translocation, leading to increased nerve growth factor
(NGF) expression at both transcript and protein levels, indicating
a role in promoting corneal healing [120]. Osmotic changes in-
duced by a high-saltdiet also trigger NFAT5 activationin the ret-
ina, promoting the transcription of VEGF and AQP5, along with
the expression of placental growth factor (PIGF), fibroblast
growth factor (FGF), and heparin-binding epidermal growth fac-
tor-like growth factor (HB-EGF), all of which are associated with
neovascular pathophysiology in diseases such as age-related
macular degeneration (AMD) [121-123]. Furthermore, PIGF acti-
vates NFAT5 in endometrial stromal cells (EnSCs) inde-
pendently of osmolarity, leading to the expression of down-
stream targets like Sgk1, HIF-1e, and VEGF-A. These findings
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suggest that the PIGF-NFAT5 axis plays a multifaceted role in
regulating angiogenesis and trophoblast invasion through Sgk1
modulation and other signalling pathways, potentially contrib-
uting to placental pathologies [124]. In the hematopoietic sys-
tem, NFATS protects hematopoietic stem cells (HSCs) from
chronic interferon type | (IFN-I) stress, highlighting its potential
as a therapeutic target in hematopoietic malignancies [125].

In MCD cells exposed to 2-bromoethanamine, a ne-
phrotoxic compound mimicking analgesic-induced nephropa-
thy, NFAT5 fails to translocate to the nucleus under hyperosmo-
lar stress. This prevents the induction of androgen receptor and
HSP70, leading to widespread apoptosis within 48 hours, under-
scoring NFAT5 essential role in renal cell survival [126]. NFATS
also reduces caspase-3-mediated apoptosis in both the outer
and inner renal medulla during ischemia-reperfusion injury, rein-
forcing its cytoprotective role in kidney cells [127].

In bone tissue, NFAT5 contributes to cementoblast differen-
tiation by regulating miR-361-3p, a microRNA that targets
NFATS. Notably, NFAT5 knockdown mirrors the inhibitory effect
of miR-361-3p overexpression, linking NFAT5S to cementogene-
sis [128]. Cardiomyocytes exposed to the cardiotoxic chemo-
therapy drug doxorubicin undergo ubiquitin-independent pro-
teasomal degradation of NFAT5, which correlates with in-
creased cell death. Interestingly, proteasome inhibitors prevent
this degradation, restoring NFAT5S levels and rescuing cardio-
myocytes from apoptosis, highlighting its cytoprotective role in
cardiac cells [129]. Moreover, doxorubicin reduces NFAT5-de-
pendent transcriptional activity of the TauT promoter, further
linking NFAT5 to cardiomyocyte stress responses [130].

Interestingly, NFAT5 also intersects with the NFxB pathway,
driving pro-apoptotic effects in human umbilical vein endothe-
lial cells (HUVECS) under hypertonic stress by suppressing Bcl2
expression, leading to apoptosis [131]. However, contradictory
findings by Fedorov et al. revealed no significant changes in
NFATS protein localization in HUVECs exposed to moderate
NaCl-induced hyperosmolarity, suggesting that the intensity of
the osmotic challenge may dictate NFAT5 activity and nuclear
translocation dynamics [132].

COX-2 is essential for maintaining interstitial osmolality and
cell survival in the renal medulla, and NFAT5 regulates COX-2
expression under hypertonic conditions. Inhibition of NFAT5 in
canine kidney cells is associated with apoptosis, further confirm-
ing its protective role in kidney cells [133]. Although hypertonic-
ity and hyperosmolality conditions induce autophagy in certain
cell types, hyperosmolality-induced autophagy appears to oc-
cur independently of NFAT5 activity [134]. Instead, it is associ-
ated with acidic macrophage autolysosomal compartments
[135], contributing to the defense against E. coliinfection [136].
In contrast, NFAT5 is essential for hyperosmolarity-induced au-
tophagy in cardiomyocytes, promoting the activation of autoph-
agy-related protein 5 (Atgb) [137]. Likewise, NFAT5 protects -
pancreatic cells by preventing autophagosome formation and
inhibiting p-cell death through the endoplasmic reticulum (ER)
stress response [138], highlighting its diverse roles in autophagy
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regulation. Moreover, NFAT5 expression increases when au-
tophagy is inhibited, inducing its target gene AQP1, which helps
prevent renal damage following ischemia/reperfusion injury
[139]; These findings underscore the versatile transactivation
properties of NFAT5S in different cellular contexts.

Immune response

As a master regulator of osmotic homeostasis, cell survival, and
inflammation, NFAT5 is indispensable for maintaining cellular
function. Its deficiency is incompatible with life, underlining its
critical role in both developmental and adaptive processes.
However, overactivation or loss-of-function mutations in NFAT5
are also linked to both innate and adaptive immune responses,
highlighting its dual role as both a protector and a potential
driver of pathological states.

In a hypertonic environment, NFAT5 promotes the transcrip-
tion of CCL2, which acts as a proinflammatory activator under
hyperosmotic conditions [140]. Functional gene analysis and
site-directed mutagenesis in NP cells have shown that NFAT5
binding to the CCL2 promoter is specifically required under hy-
pertonic stress. In contrast, NFAT5 binding to the interleukin (IL)
6 and nitric oxide synthase (NOS2) promoters occurs inde-
pendently of tonicity, suggesting that NFAT5 also supports ho-
meostasis in intervertebral discs [141, 142].

NFAT5 plays a crucial role in antigen presentation. The ma-
jor histocompatibility complex Il (MHC-II), predominantly ex-
pressed by professional antigen-presenting cells (APCs) such
as macrophages, dendritic cells, and B lymphocytes, relies on
the transcriptional coactivator CIITA for expression. Interestingly,
NFATS is essential for the regulation of CIITA specifically in mac-
rophages, but not in other APCs, underscoring its unique role in
macrophage activation and T-cell priming [143]. In contrast,
NFAT5 binds to an evolutionarily conserved promoter site of
IFN-I, where it inhibits IFN-g production, promotes macrophage
proinflammatory responses, and suppresses the Toll-like recep-
tors (TLR)3 pathway [144].

Moreover, NFAT5 suppresses heme oxygenase-1 (HO-1), a
stress-inducible protein, by blocking the binding of the basic
leucine zipper (Nrf2) protein at its promoter region, which con-
tributes to M1 macrophage polarization [145]. In a reciprocal
regulatory relationship, the HO-1 inducer hemin can inhibit
NFAT5 in a model of non-alcoholic steatohepatitis, suggesting
that these two molecules regulate each other under certain
pathological conditions [146].

NFATS is essential for proper T-cell development, indicating
the presence of a hyperosmolar environment within the thymus
[69, 147]. Although NFATS5 activation is traditionally considered
calcineurin-independent, in contrast to other NFAT family mem-
bers, recent evidence shows that calcineurin can indeed acti-
vate NFAT5in T cells [148]. It also plays a pivotal role in adaptive
immunity, supporting peripheral B-cell function in murine sple-
nocytes under osmotic stress [149] and promoting optimal T-
cell division through cyclin regulation in hypertonic conditions
[150]. Furthermore, CD24, a key cell surface protein essential for
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T-cell proliferation and homeostasis, is regulated by NFAT5 in
response to osmotic stress [151], reinforcing NFAT5 involve-
ment in adaptive immune development. Once translocated to
the nucleus, NFAT5 binds DNA, activating target genes not only
for osmoprotection but also for inflammation and immune re-
sponses.

Interestingly, the role of miR-29a-3p in the differentiation and
function of memory B regulatory cells (mBregs) has been
demonstrated in the context of liver transplantation and acute
rejection. Inhibition of miR-29a-3p leads to a significantincrease
in CD19+ B-cell differentiation into mBregs, enhancing their im-
munosuppressive capabilities through NFATS upregulation.
Notably, this effect can be reversed by NFAT5 knockdown, con-
firming its essential role in this regulatory pathway. These find-
ings suggest that targeting miR-29a-3p could offer potential
therapeutic strategies to induce immune tolerance, particularly
in the context of acute rejection scenarios [152].

Computational analysis has also shown that NFAT5 posi-
tively regulates IL12 synthesis by binding to the nucleosome 1
region in the 1L 12p40 promoter, while simultaneously inhibiting
IL10 transcription by targeting the Sp1 binding site in the IL10
promoter. This dual regulation favours proinflammatory re-
sponses and supports parasite elimination by suppressing anti-
inflammatory pathways [153].

ROLE of NFAT5 IN DISEASE

NFAT5 plays a pivotal role in cellular adaptation to osmotic
stress, particularly in tissues subject to significant osmolarity
fluctuations, such as the kidneys. In the renal medullary region,
cells endure high osmotic pressure due to urine concentration.
NFAT5 acts as a protective TF in this environment by promoting
the expression of osmoprotective genes, as previously dis-
cussed, helping to preserve cellular integrity and function. In the
absence of NFATS, cells fail to adapt to osmotic stress, leading
to cell death and compromised kidney function. However,
chronic or excessive hyperosmolar conditions, whether local-
ized (e.g., in the kidneys, central nervous system, or eye) or sys-
temic (such as in diabetes), can push NFAT5 regulatory capac-
ity into a pathological state. Under these circumstances, NFAT5
activation may inadvertently contribute to inflammation and tis-
sue damage due to its overlap with inflammatory pathways. For
example, in diabetic hyperosmolar conditions, NFAT5 can drive
the expression of proinflammatory cytokines and stress re-
sponse genes, potentially aggravating inflammation and fibrosis
in the kidneys and other tissues (Figure 2).

This section explores the role of NFAT5 under pathological
osmotic stress conditions, highlighting how its function transi-
tions from protective to harmful in both acute and chronic hy-
perosmolar environments. Understanding these dynamics may
uncover potential therapeutic strategies to modulate NFAT5 ac-
tivity, aiming to mitigate tissue damage in diseases associated
with osmotic stress.
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Dry eye disease

Dry eye disease (DED) is characterized by a hyperosmolar tear
film, which triggers inflammatory responses and cellular stress
on the ocular surface. Emerging evidence suggests that NFAT5
is a key mediator in this process, regulating both protective and
proinflammatory signalling pathways in corneal and conjuncti-
val cells under hyperosmotic conditions.

A hyperosmolar state induces NFAT5 expression and nu-
clear translocation in human limbal epithelial cells (hLECs). This
upregulationis linked to cell survival via a p38 MAPK-dependent
pathway, suggesting a protective role for NFAT5 in DED [154].
Similarly, corneal epithelial cells (HCE) subjected to hyperosmo-
lar conditions exhibitincreased NFAT5 and proinflammatory cy-
tokine gene expression. Notably, genistein and calcitriol (vita-
min D) suppress this expression, positioning these compounds
as promising candidates for future clinical trials targeting DED
treatment [155]. Hyperosmotic stress also enhances NFAT5 ac-
tivation and promotes IL20 secretion in HCE cells [156]. Moreo-
ver, hyperosmolarity triggers the secretion of inflammatory cyto-
kines, alarmins, and NFATS5 activation in Wong-Kilbourne deriv-
ative of Chang conjunctival (WKD) cells and HCE cells. Im-
portantly, NFAT5 inhibition prevents the overexpression of both
the chemokine CCL2 and the alarmin S100A4 in these cells
[1571.

Hyperosmolarity also increases CCL2 production through
NFATS activity in modified Hela conjunctival cells. This re-
sponse is partially suppressed by cyclosporine A, dexame-
thasone, p38, JNK, and NFxB inhibitors [158], providing insight
into the variable clinical responses observed with these treat-
ments in DED. Additionally, a model combining hyperosmolar
conditions with benzalkonium chloride exposure in conjuncti-
val-derived cells shows upregulation of NFAT5, macrophage in-
hibitory factor (MIF), IL8, and CCL2 [159]. Furthermore, NFAT5
nuclear translocation driven by diclofenac reduces corneal sur-
face damage without affecting tear volume, mitigating the harm-
ful effects of hyperosmolar stress [160]. Similarly, radiation-in-
duced lacrimal gland injury triggers NFATS expression, contrib-
uting to the pathophysiology of DED [161]. Overall, NFAT5 plays
a crucial role in the adaptive response of the ocular surface to
hyperosmolar stress. Given its dual role in inflammation and cell
survival, NFAT5 is emerging as a potential therapeutic target for
modulating inflammation and promoting cellular survivalin DED.

Diabetes

Sugar (sucrose) is a disaccharide composed of glucose and
fructose, widely consumed by humans over the last two centu-
ries. A high-glucose diet and sedentary lifestyle are associated
with metabolic disorders such as obesity, metabolic syndrome,
and diabetes. In high-glucose environments, NFATS expression
isinduced via p38a MAPK and PI3K activation in skeletal muscle
cells. Additionally, AR and SMIT are increased in type 1 diabetes
mellitus (T1DM) as an osmoprotective response [162]. In
healthy individuals, NFAT5 expression increases reactively in re-
sponse to hyperosmotic stress in dermal biopsies, a response
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absents in patients with T1DM, which may explain the osmotic
imbalances observed in this disease [163]. These findings em-
phasize the differential responses to osmotic stress between
healthy individuals and those with T1DM.

NFATS5 is also elevated in individuals with DM-associated
dementia [164], proposing its potential as a biomarker for dis-
ease progression. Under high-glucose conditions, NFAT5 acti-
vation exacerbates renal fibrosis through AKT phosphorylation.
However, Inc-ISG20-miR-486-bp binds to the 3'UTR of the
NFAT5 promoter, inhibiting its expression and ameliorating dia-
betic nephropathy (DN) and fibrosis. This suggests that miR-
486-5p acts as an NFATS regulator with potential therapeutic
benefits for DN [165]. Moreover, NFAT5 regulates AR and PKCs
expression in diabetic in vivo models [166], highlighting the im-
portance of the NFAT5-AR axis in the pathophysiology of diabe-
tes. In placental tissue from individuals with gestational diabetes,
NFAT5 nuclear localization and SMIT expression increase, cor-
relating with ceramide levels that contribute to a hyperosmotic
stress environment, worsening diabetes outcomes [167].

In individuals with normal glycemia, NFAT5 correlates with
IL33/ST2, while in type 2 diabetes mellitus (T2DM), it inversely
correlates with body fat percentage and directly correlates with
soft lean mass percentage. This indicates that NFAT5 may reg-
ulate IL33/ST2-related genes, promoting favourable metabolic
outcomes [168]. Furthermore, phosphorylated signal trans-
ducer and activator of transcription 3 (pSTAT3) is linked to ag-
gravated lung injury in pulmonary tuberculosis within a T2DM
rodent model. This occurs through the suppression of miR-19b
and miR-1281, which upregulate NFAT5 expression [169], im-
plying that NFAT5 plays a critical role in exacerbating T2DM-re-
lated lung complications. Finally, NFAT5 depletion in myeloid
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cells significantly reduces inflammation and insulin resistance in
mice with high-fat diet-induced obesity [170], underscoring its
potential as a target for improving metabolic outcomes in obe-
sity and T2DM.

Diabetic retinopathy

In diabetic retinopathy (DR), NFAT5 overexpression is linked to
retinal ganglion cell (RGC) death and NFxB activation [171].
NFATS5 haplodeficiency in diabetic mice decreases the expres-
sion of PKC& and AR in the retina compared to wild-type con-
trols. Similarly, intravitreal NFAT5-SiRNA reduces NFATS expres-
sion specifically in RGCs, leading to Bax (proapoptotic) down-
regulation and Bcl2 (antiapoptotic) upregulation, suggesting
that NFAT5 inhibition may offer a therapeutic strategy for DR
[166].

In RPE cells under hyperosmotic stress, the NFAT5-AR axis
promotes RPE proliferation and survival [119]. Additionally,
NFATS5 increases the expression of osteopontin (OPN), a neuro-
protective molecule, under hypertonic conditions [172]. NFATS
also induces COX-2, which in turn enhances VEGFA, IL18, and
NLRP3 transcription [173], highlighting NFAT5's dual role in pro-
moting both retinal protection and inflammation under hyperos-
molar stress. These findings suggest that NFAT5S contributes to
the balance between protective and inflammatory responses in
the retina.

Diabetic nephropathy

NFAT5 nuclear binding to OREs, along with increased AR and
sorbitol dehydrogenase (SOD) levels, is observed in patients
with DN. Moreover, higher NFAT5 and AR levels are associated
with  more severe DN phenotypes [174]. NFAT5
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haplodeficiency in a DN mouse model significantly reduces re-
nal macrophages and proinflammatory cytokine expression,
leading to less renal injury compared to wild-type models [175].
Additionally, increased circular DNA circ0037128 and NFAT5
levels correlate with reduced microRNA-497-5p expression in
kidney tissue from DN patients [176]. In vitro, NFAT5 silencing
suppresses AR expression, suggesting that NFAT5 directly reg-
ulates the AR gene in DN. The foundational study confirmed in-
creased NFAT5/AR-dependent activity in peripheral blood mon-
onuclear cells (PBMCs) from DN patients, reinforcing the
NFAT5-AR axis role in DN pathophysiology [177]. These find-
ings further underscore the role of NFAT5 in regulating inflam-
mation in the kidneys during DN.

Immune-related diseases

Infections

NFAT5 plays a multifaceted role in inflammation, acting as both
a promoter of immune responses and, paradoxically, a facilitator
of viral infections. It drives the transcription of key proinflamma-
tory cytokines like TNF-o, IL1g, and IL6, essential for recruiting
immune cells and amplifying inflammation. It also upregulates
chemokines such as CCL2, promoting the recruitment of mon-
ocytes, memory T cells, and dendritic cells to inflammatory sites,
strengthening the initialimmune defence. However, NFAT5 role
is not exclusively protective, some viruses exploit its regulatory
functions to enhance their replication and evade immune de-
tection. This dual behaviour complicates its involvement in in-
fections, as NFAT5 activation can support both immune de-
fense and viral persistence, contributing to excessive inflamma-
tion and tissue damage.

Notably, NFAT5 acts as a host factor-viral enhancer for HIV-
1 subtype viruses in HelLa CD4+ cells and THP-1 monocytes,
suggesting that disrupting this interaction could inhibit viral rep-
lication and potentially slow acquired immunodeficiency syn-
drome (AIDS) progression [178]. Furthermore, Mycobacterium
tuberculosis triggers a positive feedback loop in HIV infection by
inducing NFAT5 through TLR activation. This involves down-
stream signalling molecules such as MyD88 (myeloid differenti-
ation primary response-88), IRAK1 (interleukin 1 receptor-asso-
ciated kinase-1), and TRAF6 (TNF receptor-associated factor-6),
ultimately exacerbating disease progression [179].

The non-structural protein 5A (NS5A) of hepatitis C virus
(HCV) significantly increases NFAT5 expression, which in turn
modulates HSP72 expression, enhancing HCV replication, high-
lighting NFAT5 as a key player in HCV propagation [180]. In hep-
atitis B virus (HBV) infection, NFAT5 expression is downregu-
lated due to hypermethylation of the AP1-binding site in its pro-
moter within hepatoma cells. Additionally, HBV suppresses
NFAT5 via miR-30e-5p, which targets MAP4K4. This suppres-
sion is closely associated with the development of hepatocellu-
lar carcinoma (HCC) [181]. Furthermore, NFAT5 supports HCC
stemness and cisplatin resistance through the ATM-NFxB path-
way [182].
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In silico analysis identified NFAT5 as a key TF regulating cy-
tokine-regulating immune-expressed genes (CRIEGs), which
contribute to the inflammatory response during COVID-19 [183].
Additionally, NFAT5 controls the expression of EAAT3, promot-
ing glutamate uptake and increasing intracellular glutathione, a
vital antioxidant that protects cells from Epstein-Barr virus
(EBV)-induced oxidative stress [184].

Coxsackievirus B3 (CVB3), responsible for myocarditis, pro-
duces the protease 2A, which cleaves NFAT5 at Gly503, gener-
ating an inactive 70 kDa dominant-negative form of the protein.
This promotes viral replication by impairing NFAT5 function,
representing a viral evasion mechanism [185]. Moreover, Por-
phyromonas gingivalis, induces miR-132 in THP-1 cells, which
targets and suppresses NFATS5, reducing TNF-o production.
This suggests that P. gingivalis uses NFAT5 inhibition as an im-
mune evasion strategy [186].

NFAT5 also plays a crucial role in defence against Leishma-
nia major, primarily by activating TLRs and iNOS in macro-
phages, a process dependent on inhibitor of kB kinase (IKK)-p
activity [187]. Interestingly, TLR activation through lipopolysac-
charide (LPS) in RAW 264.7 mouse macrophages triggers xan-
thine oxidase-ROS production, a response inhibited by high salt
through ROS mitochondrial suppression, suggesting hyperto-
nicity and inflammation counterbalance NFAT5 activation [188].
Moreover, low LPS doses in macrophages efficiently recruit
NFxB p65 and c-Fos to proinflammatory genes. In contrast, high
LPS doses lead to NFAT5-independent NFxB recruitment. No-
tably, H3K27me3 demethylation emerges as an NFAT5-de-
pendent early mechanism that promotes p65 recruitment to
TLR4-induced proinflammatory gene promoters [189].

Under hypertonic stress, NFAT5 enhances macrophage
production of nitric oxide (NO), supporting the immune re-
sponse and serving as a protective barrier against the parasite
[190]. On the other hand, under a high-salt diet, NFAT5 is in-
duced by glucocorticoids in neutrophils, which paradoxically
impairs their antibacterial function and reduces their ability to
defend against Listeria monocytogenes infection [191].

Chronic Inflammation

Beyond its well-established role in osmoregulation, NFATS
plays a significant role in modulating inflammatory responses,
particularly by regulating key cytokines and chemaokines. This
positions NFAT5 as a central player in both localized and sys-
temic inflammation. Dysregulation of NFAT5 activity has been
implicated in chronic inflammatory diseases, where persistent
activation exacerbates tissue damage. This section examines
how NFATS5 influences immune responses, contributes to in-
flammatory pathologies, and interacts with other immune-re-
lated molecular pathways, highlighting its potential as a thera-
peutic target for inflammatory conditions.

Patients undergoing peritoneal dialysis are frequently sub-
jected to chronic inflammation. Dialysis fluids enriched with glu-
cose, mannitol, or NaCl activate NFAT5 in mesothelial cells, pro-
moting CCL2 production, a crucial step in the fibrosis pathway
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[192, 193]. Furthermore, NFAT5 expression is notably upregu-
lated in peritoneal biopsies from uremic patients, accompanied
by an increased frequency of CD68+ activated macrophages.
This suggests an active role for NFAT5 in peritoneal inflamma-
tion and fibrotic progression [194].

NFATS exerts dual roles in CD4+ T cells, adapting its func-
tion depending on the microenvironment. Under hyperosmolar
stress, NFAT5 promotes IL2 production and the expression of
Th17-associated genes such as RORyt and IL23R. In contrast,
activation via anti-CD3 antibody skews the response toward
IFNy and IL17, while inhibiting the Treg response. Notably, in an
experimental colitis model, NFAT5S deficiency leads to a more
severe inflammatory response, underscoring its critical regula-
tory role in intestinal inflammation [195].

NFAT5 also plays a pivotal role in sepsis by binding to the
TNFo promoter, interacting with NFxB p65, and recruiting the
p300 subunit, thereby enhancing LPS-induced inflammation
[196]. Notably, NFxB binds to the NFAT5 promoter to enhance
the expression of glycolysis-related genes and proinflammatory
cytokines. This interaction is vital for restoring metabolic activity
in immune-tolerant macrophages during sepsis [197]. NFAT5
dysfunction is observed in sepsis, with reduced expression of
target genes essential for urine concentration, including CIC-K1,
barttin, UTA-1, and AQP2, partially explaining the urinary imbal-
ances observed in acute kidney injury [198]. Additionally, in a
murine sepsis model, NFAT5S expression decreases alongside a
risein M2 macrophages, a process associated with miR-223 reg-
ulation, a key factor in IL4-driven M2 polarization, indicating that
NFAT5S regulates anti-inflammatory macrophage responses
[199].

Under hyperosmolar conditions, invariant NKT (iNKT) cells,
which typically produce both IL4 and IFNy, lose the ability to
produce IFNy but retain IL4 synthesis when stimulated via TCR,
IL12, or IL18. This NFAT5-dependent response highlights its sig-
nificance in chronic inflammatory diseases such as rheumatoid
arthritis (RA) [200]. Serum amyloid A (SAA) induces NFAT5 ex-
pression through TLR2/4-dependent pathways, promoting
macrophage infiltration and arthritis progression in mice. Nota-
bly, inhibiting either NFAT5 or TLR2/4 reverses these effects,
highlighting NFAT5 role in inflammatory arthritis [201].

Hyperosmolar stress enhances NFATS nuclear transloca-
tion in primary human chondrocytes and the ATDC5 chondro-
cyte cell line, supporting its involvement in cartilage inflamma-
tion and survival [202]. IL1g is upregulated in chondrocytes
from individuals with osteoarthritis (OA), driving a proinflamma-
tory state via an NFAT5-SIRT-dependent pathway, similar to the
effects of melatonin. NFAT5 inhibition reduces the production
of TNFa, IL1B, prostaglandin E2 (PGE2), and NO in chondro-
cytes, highlighting NFAT5 as a key player in OA pathogenesis
and melatonin as a potential therapeutic modulator [203]. In a
knee OA model induced by medial meniscus destabilization,
NFATS5 expressionis upregulated, and mice with genetic NFATS
disruption show reduced synovial inflammation and cartilage
damage. Thisis likely due to a decrease in CCL2, IL18, MMP-13,
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and ADAMTS-5 production, as well as a reduction in mono-
cyte/macrophage recruitment [204]. NFAT5 expression is signif-
icantly elevated in cartilage samples from OA patients, contrib-
uting to metalloproteinase overexpression through TLR2 activa-
tion by 29 kDa fibronectin fragments [205]. Moreover, synovial
cells sense mechanical stimuli similarly to osmotic stress, acti-
vating NFATS, suggesting that NFAT5 plays a crucial role in cel-
lular adaptation to mechanical changes in OA [206].

In NP cells, TNFa drives NFAT5 nuclear translocation, regu-
lating proinflammatory chemokines such as CXCL1, CXCL2,
and CXCL3. Interestingly, this regulation depends on a con-
served NFxB-binding site rather than the predicted NFAT5-
binding site. This underscores the indirect yet essential role of
NFATS in driving the pathophysiology of intervertebral disk de-
generation (IDD) through NFxB [207]. In the spinal dorsal horn
(SDH), NFATS5 triggers inflammation exclusively in astrocytes
and regulates AQP4 expression via Aurora kinase B (AURKB)-
mediated phosphorylation, contributing to neuropathic pain de-
velopment [208].

In a formalin-induced inflammatory pain model, NFAT5-het-
erozygous mice exhibit reduced pain sensitivity compared to
wild-type mice. These mice also show lower expression of c-Fos,
p-ERK, and phosphorylated NMDA receptor subunit 2B (p-
NR2B), molecules regulated by the mTOR pathway, positioning
NFAT5 as a potential therapeutic target for inflammatory pain
[209].

In a mouse model of perforating corneal injury (PCI), NFAT5
is highly upregulated in recruited corneal macrophages. Deplet-
ing NFAT5 in myeloid cells accelerates corneal oedema resolu-
tion, indicating that NFAT5 plays a critical role in corneal inflam-
mation [210]. In lens epithelial cells, UV-B radiation increases
NFATS expression and NFxB activation, especially in the HLE-
B3 cell ling, suggesting a collaborative role of both factorsin cat-
aractogenesis [211]. Moreover, transgenic mice expressing a
dominant-negative NFAT5 protein exhibit impaired lens devel-
opment and develop nuclear cataracts shortly after birth [212].

In Duchenne muscular dystrophy (DMD), a chronic idio-
pathic inflammatory myopathy, NFAT5, SMIT, AR, and TauT are
overexpressed compared to controls, implicating this osmoreg-
ulatory-proinflammatory pathway in chronic muscle inflamma-
tion [213]. Notably, NFAT5 predominantly localizes to the nu-
cleus in DMD muscle cells. Unlike other cell types, its activity re-
mains unaffected by hyperosmolar conditions or proinflamma-
tory cytokines such as IFNy, IL1g, and TNF-o, suggesting that
permanent fibrosis in DMD may lock NFAT5 in an active state,
contributing to reduced cell viability [214, 215]. High NaCl levels
are observed in the skin of atopic patients, where high-salt con-
ditions drive Th2 polarization via the NFAT5-Sgk1 pathway
[216]. Interestingly, high salt also induces an anti-inflammatory
Th17 phenotype, promoting Foxp3 and IL17A expression in
CD4+ Tcells [217].

NFATS5 is crucial for salt-induced differentiation of CD4+ T
cells into effector phenotypes, and silencing NFATS signifi-
cantly impairs the cytotoxic activity and antitumor efficiency of
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these cells [218]. In comparison, macrophages expressing
NFAT5 are more prone to polarize toward a Th1 proinflamma-
tory phenotype, characterized by increased IL12, Fizz-1, and ar-
ginase 1 expression, compared to Lewis lung carcinoma and
ID8 ovarian carcinoma cells. This proinflammatory role was fur-
ther confirmed in vivo through adoptive transfer models, where
NFAT5-deficient macrophages displayed reduced antitumor
activity [219]. Inhibition of NFAT5 improves allograft survivalin a
murine heart transplantation model. Treatment with KRN2 atten-
uates acute allograft rejection by suppressing T cell activation
and promoting Treg cell differentiation, suggesting that NFAT5
modulation could be a promising approach for transplant toler-
ance [220].

In LPS-induced rodent nephrotic proteinuria, NFAT5 and
NFxB are upregulated in both in vivo and LPS-incubated podo-
cytes. Interestingly, NFAT5 inhibition suppresses NFxB activa-
tion and ameliorates nephrotic proteinuria, supporting its role in
renal inflammation [161]. Similarly, in a seawater inhalation-in-
duced acute lung injury model, NFAT5 is upregulated in lung tis-
sue and alveolar macrophages, while NFxB activity diminishes
when NFAT5 and proinflammatory cytokines are silenced, high-
lighting NFATS's involvement in lung injury pathophysiology
[221].

Silencing NFAT5 in myeloid cells reduces osteoclastic activ-
ity, leading to slower orthodontic tooth movement, less perio-
dontal bone loss, lower root resorption, and preserved bone
density under high-salt conditions [222, 223]. In periodontitis,
NFAT5 gene expression is downregulated compared to healthy
gingival tissue, accompanied by upregulation of miRNA-20g,
miRNA-30e, and miRNA-93, suggesting a potential post-tran-
scriptional regulatory mechanism [224].

Autoimmunity

NFATS5 plays a pivotal role in both innate and adaptive immunity,
making it a key regulator in various autoimmune disorders. This
section explores the connection between NFAT5 and autoim-
munity, highlighting its involvement in disease pathogenesis
and potential therapeutic implications.

Mutations in NFAT5 have been linked to primary immune
regulatory disorders, particularly autoimmune lymphoprolifera-
tive syndromes [225]. Additionally, pathogenic NFAT5 variants
have been identified in 14 families with familial autoimmunity,
encompassing primary Sjogren's syndrome (pSS), systemic lu-
pus erythematosus (SLE), and RA, underscoring its role in ge-
netic predisposition to autoimmunity [226]. NFAT5 protein ex-
pression is elevated in renal biopsies from lupus nephritis (LN)
patients, correlating with increased inflammatory cytokine ex-
pression and proteinuria severity. In a pristane-induced SLE
mouse model, myeloid-specific NFAT5 deficiency prevented
the development of SLE and LN, highlighting its critical role in
disease progression [227].

NFATS5 also regulates the GO/G1 switch gene 2 (G0S2) via
the p1 promoter site. In myasthenia gravis (MG), tacrolimus, an
immunosuppressant, reduces NFAT5 and GOS2 expression in
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PBMCs, providing insights into both disease mechanisms and
tacrolimus' mode of action [228]. Furthermore, in high-salt envi-
ronments, NFATS activation promotes Th17 differentiation, ex-
acerbating autoimmune encephalomyelitis [229]. In MG and
thymoma-associated MG, miR-20b is downregulated, leading to
increased NFAT5S expression. Given that miR-20b directly tar-
gets NFATS, its downregulation may act as a tumor suppressor
mechanism, potentially explaining thymoma progression in MG
patients [230].

Interestingly, NFAT5 haplodeficiency alleviates experi-
mental autoimmune encephalomyelitis (EAE) but only in female
mice. This protective effect is associated with an increased reg-
ulatory T cells (Treg) population in the central nervous system
(CNS) and spleen, as well as a notable reduction in
CD11c+CD8u+ dendritic cells, specifically in the female CNS
[231].

In Behcet disease, oral manifestations are associated with
NFAT5 downregulation [232]. Additionally, transfection of miR-
18b, miR-106a, and miR-363-3p into CD4+ T cells suppresses
Rorc, Rora, IL17A, and IL17F expression, thereby inhibiting
Th17-driven IL17 production by blocking Rora- and NFAT5-me-
diated transcriptional activation [233]. In active vitiligo, both
Foxp3 and NFAT5 transcripts are significantly downregulated,
suggesting a potential link between NFAT5 deficiency and Treg
dysfunction [234]. Similarly, in recurrent Graves' disease, NFAT5
expression is diminished in CD4+ T cells, indicating that its
downregulation may contribute to disease relapse [235]. These
findings emphasize NFAT5 as a crucial modulator of autoim-
munity. For an extensive review on NFATS in autoimmune dis-
eases, refer to Lee and colleagues [236].

INn T1DM, NFAT5 plays a role in Treg dysfunction. miR-181a-
driven NFAT5 activation impairs Treg differentiation, contrib-
uting to immune imbalance. Notably, blocking either miR-181a
or NFAT5 restores Treg development and reduces autoimmune
activity in pancreatic islets, suggesting a potential therapeutic
target [237]. Additionally, autoantibodies against NFAT5 have
been reported in PES1, a syndrome in which NFAT5S dysfunction
contributes to tubulointerstitial nephritis due to its role in regu-
lating the AQP2 promoter [238].

NFAT5 is also implicated in RA, where its expression is ele-
vated in synovial tissue, promoting synovial proliferation and an-
giogenesis [239]. In RA macrophages, NFAT5 enhances cell
survival and CCL2 secretion, contributing to chronic inflamma-
tion by promoting macrophage resistance to apoptosis [240]. In
murine models of arthritis, myeloid-specific NFAT5 deletion re-
duces disease severity, dendritic cell maturation, and the differ-
entiation of pathogenic Th1/Th17 cells, further highlighting its
role in pro-inflammatory immune responses [241]. Interestingly,
in collagen-induced arthritis models, NFATS expression is signif-
icantly reduced in mice on a low-salt diet, correlating with de-
creased arthritis severity compared to those on normal or high-
salt diets. This supports the role of NFAT5 in linking osmotic
stress with inflammation in autoimmune diseases [242].
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In fibroblast-like synoviocytes (FLSs), IL18 and TGF-B in-
duce CCL2 and coagulation factor Ill secretion via p38 MAPK-
activated NFATS. Inhibiting NFAT5S prevents lamellipodia for-
mation, cell migration, and invasion—processes that can be par-
tially restored in RA-FLSs upon CCL2 and IL1g stimulation. Ad-
ditionally, NFAT5 enhances CCL20 and CXCL8 transcription in
RA synovial fibroblasts (RASFs) upon exposure to neutrophil-de-
rived lactoferrin [243]. Notably, KRN2, an inhibitor of TGF-g-in-
duced FLS migration, underscores NFATS's role in driving in-
flammation in RA pathogenesis [244]. However, paradoxically,
NFATS5 overexpression suppresses RA-FLS proliferation and in-
vasion—an effect reversed by miR-338-5p co-transfection [245].
These findings suggest that NFAT5 may have dual roles in auto-
immune diseases, acting as both a pro-inflammatory regulator
and a context-dependent modulator of immune responses.

Cancer

Numerous factors contribute to the development and progres-
sion of neoplasms, including impaired immunity, decreased im-
mune surveillance, increased proliferation of neoplastic cells,
and chronic inflammation. This section explores the role of
NFATS in cancer initiation and progression, shedding light on its
complex functions in various cancer types.

Inlung adenocarcinoma (LUAD) cells, NFAT5 expression in-
creases alongside AQP5. Inhibition of both molecules reduces
proliferation and migration, while NFAT5 overexpression en-
hances AQP5 expression, fostering tumor cell growth [246].
However, bioinformatics analysis revealed that NFATS expres-
sion was significantly decreased in LUAD and lung squamous
cell carcinoma (LUSC). Interestingly, high NFAT5 expression
correlates with better overall survivalin LUAD patients but worse
survival in LUSC patients, highlighting the context-dependent
functions of NFAT5 in different lung cancer subtypes [247]. In
laryngeal squamous cell carcinoma (LSCC), the IncRNA small
nucleolar RNA host gene 16 (SNHG16), a putative oncogene,
shows elevated expression in both cells and tissue. SNHG16
binds to miR-140-5p, whose overexpression inhibits LSCC cell
proliferation and migration. Notably, NFAT5 is a direct target of
miR-140-bp, and its downregulation suppresses the Wnt/g-
catenin signalling pathway [248].

In EGFR-mutated non-small cell lung cancer (NSCLC), mac-
rophage-conditioned medium enhances cell migration and re-
sistance to tyrosine kinase inhibitors (TKIs), highlighting the crit-
ical role of the tumor microenvironment in cancer progression.
Suppressing NFAT5 expression reduces both cell migration and
resistance to gefitinib, an EGFR inhibitor, underscoring NFAT5S's
potential as a therapeutic target [249]. Circular RNA
circ_0001944 is highly expressed in NSCLC and correlates with
poor prognosis. This RNA sponges miR-142-5p, a negative reg-
ulator of NFAT5, leading to NFATS overexpression. This cas-
cade enhances proliferation, migration, invasion, and glycolysis
in NSCLC cells [250]. Similarly, INcRNA MFI2-AS1, enriched in
NSCLC-derived exosomes, sponges miR-107, increasing
NFAT5 expression and promoting tumor progression [251].
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Furthermore, serum exosomes from NSCLC patients contain
circCCDC 134, which supports growth, metastasis, and glycoly-
sis by absorbing miR-625-6p, resulting in NFAT5 upregulation
[252]. Macrophages in the tumor microenvironment induce
NFATS expression in A549 LUAD cells, contributing to cisplatin
resistance, cell migration, and invasion. siRNA silencing of
NFATS reverses these effects, reducing resistance and meta-
static potential [253].

NFATS5 also plays a significant role in platinum-resistant epi-
thelial ovarian carcinoma. Overexpression of RBMS3 protein in-
hibits g-catenin/CBP signalling by stabilizing several negative
regulators, including NFAT5, through competitive inhibition of
miR-126-6p-mediated repression [254]. Basal NFAT5 expres-
sionis notably elevated in epithelial ovarian cancer cell lines (ES-
2, OVCAR3, TOV112D, and UWB1.289), while NFAT5 silencing
reduces viability, proliferation, and migration, particularly in
UWB1.289 cells. Moreover, increased cytoplasmic NFATS ex-
pression in ovarian cancer specimens is associated with more
favourable clinical and pathological outcomes [255]. These ob-
servations suggest that NFAT5 may serve as a prognostic bi-
omarker in ovarian cancer, reflecting its involvement in both tu-
mor progression and patient outcomes.

Furthermore, NFAT5 plays a pivotal role in endometrial can-
cer, where the NFAT5-COX-2 signalling axis is critical for tumor
progression. NFAT5S is more abundant in high-grade tumors and
modulates the expression of key genes, including COX-2 and
HIF1a, suggesting an intricate interplay that may drive cancer
progression [256].

Integrin oBp4 clustering, in the presence of chemoattract-
ants, enhances NFATS transcriptional activity, promoting the mi-
gration of human breast carcinoma cells [66, 257]. NFAT5 is pro-
posed as a biomarker for inflammatory breast cancer, with po-
tential as a screening tool for breast tumors [258-260). In MCF-7
breast cancer cells, NFAT5 synergizes with STAT3, directing the
inflammatory response toward IL17 and VEGFA production,
supporting tumor inflammation and angiogenesis [261]. Addi-
tionally, NFAT5 regulates S100A4, an essential protein linked to
tumor metastasis, through an integrin-dependent mechanism
[262]. Overexpression of NFAT5 is observed in inflammatory
mammary carcinoma and vascular-invasive mammary carci-
noma, where it activates the noncanonical Wnt pathway, asso-
ciated with poor prognosis [263].

The role of NFATS in HCC remains controversial; NFATS
functions as a tumor suppressor by promoting PARP-1- and
Bax/Bcl-2-dependent apoptosis. It also inhibits the epithelial-
mesenchymal transition (EMT), downregulating claudin-1 and
fibronectin, key markers of invasion and metastasis [264]. The
mitochondrial aspartyl-tRNA synthase 2 (DARS2) functions as
anoncogene in HCC, promoting cell proliferation and inhibiting
cell death. NFAT5 binds to DARS2, suppressing its expression
and thereby supporting tumor suppression [181]. In contrast,
NFATS expression is reported to be 93% higher in HCC tumors,
independent of their aetiology. This elevated NFAT5 expression
is associated with recurrence, metastasis, and mortality, likely
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through COX-2 signalling [265]. These conflicting findings high-
light the need for further research to clarify the precise role of
NFAT5 in HCC tumorigenesis.

NFATS expression is elevated in chronic lymphocytic leu-
kaemia (CLL), promoting proliferation and resistance to apopto-
sis. Depletion of NFAT5 leads to cell cycle arrest and enhanced
apoptosis. AQP5, is also regulated by NFAT5 in CLL cells, further
supporting its role in cell survival [266]. Upstream Stimulatory
Factor 2 (USF2) promotes CLL progression by inducing NFAT5
ubiquitination and suppressing STIP1 homology and U-Box pro-
tein 1 (STUB1), a tumor suppressor [267]. In acute lympho-
blastic leukaemia cells, purple sweet potato anthocyanins in-
hibit NFAT5 activity, inducing calcicoptosis, a calcium overload-
driven cell death mechanism [268]. Under hyperosmolar condi-
tions, NFAT5 drives the activation of paired box 2 (PAX2) in co-
ordination with PAX5, in pre-B acute lymphoblastic leukaemia
cells [269].

In glioblastoma multiforme (GBM), NFAT5 expression is
markedly increased in both tumor samples and GBM cell lines,
positively correlating with the WHO-GBM classification. NFAT5
regulates the angiogenic activity of the long noncoding RNAs
SBF2 antisense RNA 1 (SBF2-AS1) and miR-338-3p [270], sup-
porting neoplastic cell survival and promoting angiogenesis.
Additionally, miR-641 levels, significantly lower in GBM tissues
than in controls, negatively regulate NFAT5 expression and
transactivation. This regulation affects the p-AKT signalling
pathway, ultimately promoting GBM cell survival [271]. Further-
more, circFOXO3 acts as a competing endogenous RNA, en-
hancing NFAT5S expression via miR-138-bp and miR-432-6p
[272], highlighting the importance of NFAT5 in GBM promotion
and survival.

NFATS5 is implicated in colorectal brain metastasis, marking
its relevance in distant tumor spread [273]. In colon cancer cells
under hypertonic stress, ST00A4 is upregulated by NFAT5 bind-
ing to the ORE of S100A4, located in the first intron region, de-
pendent on its methylation status [274]. Interestingly, in a colo-
rectal cancer model, NFAT5 expression is reduced in circulating
tumor cells, suggesting its potential role in circulating tumor dy-
namics [275]. Additionally, NFAT5 has been proposed as a pro-
gression biomarker in colon cancer, identified in a competitive
endogenous RNA network [276].

NFATS5 promotes oral squamous cell carcinoma (OSCC) cell
proliferation by enhancing EGFR N-glycosylation, which facili-
tates its translocation to the plasma membrane under hyper-
tonic conditions, a process essential for OSCC survival [277].
Under hyperosmotic conditions, NFAT5 also promotes the ex-
pression of Ranbp3|, a protein whose deficiency is associated
with a cancer-promoting phenotype in human renal cell carci-
nomas [278]. In pancreatic ductal adenocarcinoma (PDAC),
NFAT5 is similarly upregulated and linked to poor prognosis.
Phosphoglycerate kinase 1 (PGK-1), a key glycolytic enzyme in-
volved in ATP generation, is identified as an NFATS target in
PDAC [279].

OPEN ACCESS | www.cell-stress.com 29

NFAT5 in health and disease

NFAT5 is overexpressed in a cohort of 25 patients with adre-
nocortical carcinoma, where ten exhibited NFAT5 amplification
and overexpression, confirmed by gPCR. This pattern correlates
with high sensitivity and specificity for tumor malignancy [280].
In melanoma, elevated levels of the long noncoding RNA myo-
cardial infarction-associated transcript (MIAT) are linked to
poorer patient outcomes. Mechanistic studies reveal that MIAT
enhances NFAT5 transcription by recruiting TCF12 to the
NFATS promoter, promoting melanoma cell proliferation, migra-
tion, and invasion [281].

The INcRNA AP000842.3 is a negative regulator of NFATS,
contributing to cuproptosis in prostate adenocarcinoma and
promoting malignant progression. NFAT5 expression is partially
modulated by miR-206, indicating a complex regulatory net-
work involved in prostate cancer development, where NFATS
plays a central role [282]. A high-salt diet induces activation of
the NLRP3 inflammasome complex via NFATS5, leading to CD4+
T-cell-mediated immune-related adverse events [283]. NFAT5 is
highly expressed in exhausted tumor-induced CD8+ T cells and
is associated with decreased tumor control. Notably, NFAT5 de-
letionimproves tumor control by downregulating exhaustion-re-
lated proteins such as HMG-box TF (TOX) and programmed cell
death protein 1 (PD-1), while enhancing the expression of key
cytokines such as IFN-y and TNFa [284].

NFAT5 interacts with PARP-1 to prevent R-loop accumula-
tion and subsequent DNA damage in osteosarcoma cells [285].
Moreover, NFAT5 recruits the methyl transferase METTL3 to R-
loops, facilitating RNA methylation via m6A, which promotes R-
loop resolution [286]. RNA helicases DDX5 and DDX17 function
as transcriptional coactivators of NFAT5, promoting tumor cell
migration by activating NFAT5 target genes [287]. These hel-
icases interact with CDK-9, enhancing neoplastic cell prolifera-
tion, positioning NFAT5 as a key regulator of tumor growth and
invasiveness [288].

This highlights the multifaceted role of NFAT5 in cancer, in-
fluencing immune evasion, cell survival, proliferation, inflamma-
tion, and metastasis. A deeper understanding of the molecular
mechanisms underlying NFAT5 involvement in these processes
could uncover new therapeutic strategies aimed at targeting
NFATS to restrain cancer progression. Further investigations are
essential to clarify NFATS function across different cancer types
and to explore how its modulation might yield therapeutic ben-
efits.

Cardiovascular diseases

Beyond its well-established role in renal regulation of systemic
blood pressure, NFAT5S has emerged as a crucial extrarenal reg-
ulator, influencing vascular smooth muscle cells (VSMCs) in ar-
teries and arterioles. These cells are essential in maintaining vas-
cular tone, and NFAT5 supports their adaptive responses under
osmotic and mechanical stress, conditions frequently encoun-
tered in the vasculature, particularly in hypertension. In arterial
hypertension, chronic mechanical stress on blood vessels acti-
vates NFAT5, which promotes the expression of genes
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associated with vascular remodelling, inflammation, and fibrosis.
While these responses initially help preserve vascular integrity,
sustained NFAT5 activation eventually drives maladaptive
changes, contributing to vascular stiffening, increased periph-
eral resistance, and even atherosclerotic plaque formation. This
pathological shift highlights the dual role of NFATS, it facilitates
early adaptation but, over time, contributes to long-term vascu-
lar deterioration in chronic hypertension.

In this section, we will explore the emerging role of NFAT5 in
the extrarenal regulation of blood pressure and its implications
for arterial hypertension and cardiovascular disease. Prolonged
NFAT5 activation may exacerbate vascular dysfunction, trans-
forming what begins as a protective mechanism into a contribu-
tor to disease progression. From a therapeutic perspective, tar-
geting NFAT5 pathways in VSMCs presents a promising oppor-
tunity to address these maladaptive processes.

NFAT5 also plays a critical role in cardiac osmoregulation.
Under hypertonic stress, NFATS activates its target genes, pro-
moting adaptive cellular responses, while hypotonic environ-
ments suppress its expression. This osmoregulatory capacity is
particularly vital during myocardial infarction, where cellular hy-
dration and stress responses are crucial for cardiac cell survival
[289, 290]. Additionally, high serum sodium levels promote
thrombosis and vascular events, and NFAT5 contributes to this
process by enhancing the synthesis and secretion of von Wil-
lebrand factor (VWF) from endothelial cells, thus linking sodium
imbalance with prothrombotic events [291].

Associations between NFAT5S and blood pressure regula-
tion have been identified in large cohorts of individuals of Euro-
pean ancestry, particularly concerning elevated pulse pressure
[292]. Notably, the minor G allele of rs9980 in the NFAT5 locus
on chromosome 16 is strongly associated with increased
plasma sodium concentrations across European, Asian, and In-
dian populations [293]. Furthermore, the NFAT5-VEGFC signal-
ling axis plays a pivotal role in maintaining systemic osmotic bal-
ance and blood pressure regulation. Systemic depletion of inter-
stitial mononuclear phagocytes, accompanied by NFAT5-
VEGFC downregulation, promotes salt-sensitive hypertension,
underscoring NFAT5 role in preserving vascular homeostasis
under hyperosmolar stress [294].

In systemic arterial hypertension, NFAT5 is upregulated in
VSMCs through a c-Jun-dependent pathway in response to me-
chanical stretching of the vessel wall [295]. This activation re-
sults in the nuclear accumulation of the NFAT5c¢ isoform, con-
tributing to vascular remodelling and adaptive changes in arte-
rial stiffness [296]. Interestingly, genetic ablation of NFAT5 spe-
cifically in VSMCs disrupts the balance of extracellular matrix
proteins, such as actin p-like 2 (ACTB2), tenascin 2 (TNC), and
COX-2, which leads to maladaptive arterial remodelling [297].

Moreover, NFATS deficiency in VSMCs leads to the for-
mation of lipid-rich aortic lesions, characterized by lipid droplet
accumulation in the subintimal layer, a hallmark of early athero-
genesis. Notably, NFATS regulates lipid metabolism-related
genes in response to cholesterol overload, suggesting a
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protective role against atherosclerosis in hyperlipidaemic con-
ditions [298]. Moreover, NFAT5 activation is regulated through
the ERK1/2 pathway. This activation drives CCL2 expression in
infiltrating monocytes, promoting collateral artery formation in
murine models of hind limb ischemia [299]. Additionally, NFAT5
enhances arteriosclerosis via NLRP3 inflammasome activation
in endothelial cells, contributing to chronic vascular damage
[300].

High-salt diets are strongly associated with the develop-
ment of hypertension, a major risk factor for neovascular AMD.
In this context, hyperosmotic stress triggers NFATS activation in
RPE cells, promoting the expression of VEGF, AQP5, and AQPS,
a combination that may worsen retinal damage and oedema
[301]. Moreover, high-salt environments amplify proinflamma-
tory cytokine production, including IL6 and CCL2, particularly
after LPS stimulation in ARPE-19 cells in an NFAT5-dependent
manner [302].

The NFAT5-VEGFC-lymphangiogenesis axis also plays a
crucial role in human arterial hypertension [303]. In a Wistar rat
hypertension model, increased nucleic acid-binding activity of
Annexin-A2, alongside a rise in NFAT5 transactivation activity
without altering its abundance, occurs alongside an increase of
AQP2 in the MCD [304]. These findings suggest that Annexin-
A2 modulates NFAT5 activity, contributing to the kidney role in
systemic hypertension.

Furthermore, studies in spontaneous hypertensive rodent
models show increased NFATS expression, co-expressed with
lymphopoiesis markers such as prospero homeobox-1 (Prox-1),
lymphatic vessel endothelial hyaluronan receptor 1 (Lyve-1),
podoplanin (POD), and VEGFC in the left ventricle. These
changes coincide with hemodynamic disturbances, including
impaired diastolic function, positioning NFAT5 as a key player in
cardiac muscle lymphatic-dependent remodelling [305].

The importance of NFAT5 extends to heart development, as
itis essential for normal cardiac morphogenesis during embryo-
genesis. This is highlighted by the lethality observed in NFAT5(-
/) homozygous models, with most in vivo studies relying on
haplodeficient NFAT5 models to circumvent early lethality [306].
In dialysis patients, severe arterial calcification is linked to in-
creased NFAT5 expression and decreased miR-381-3p levels.
miR-381-3p directly binds to the 3' UTR of NFAT5, acting as a
negative regulator. This interaction suppresses apoptosis and
slows vascular calcification, suggesting a potential therapeutic
target for chronic kidney disease management [307]. In athero-
genesis, NFAT5 promotes inflammation by inducing CCL2 ex-
pression in monocytes, facilitating macrophage migration, a key
step in plaque formation driven by BMCs [308].

NFAT5 also contributes to obesity and insulin resistance
through white fat epigenetic suppression, with a correlation ob-
served between NFATH expression in subcutaneous adipo-
cytes and body mass index [309]. Moreover, AQP1 and NFAT5
co-expression has been observed [310] alongside elevated pro-
inflammatory and remodelling molecules, such as F-actinand o-
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SMA, in models of aortic stiffness linked to diabetes and hyper-
cholesterolemia [311].

A high-salt diet also exacerbates cardiovascular risk by pro-
moting plasminogen activator inhibitor-1 (PAI-1) expression in
ApOE-/- mice. This effect is NFAT5-dependent, as the PAI-1 pro-
moter contains a TGGAATTATTT NFAT5 binding site, enhanc-
ing antifibrinolytic activity in endothelial cells, a mechanism that
could contribute to prothrombotic states and vascular dysfunc-
tion [312].

In the context of viral myocarditis, NFAT5 plays a protective
role. Infections with Coxsackievirus B3 (CVB3), known for induc-
ing cardiac damage, are exacerbated under NFATS deficiency.
Mice lacking NFAT5 exhibit higher viral loads, worsened cardiac
pathology, and reduced survival rates. These findings highlight
NFAT5S's dual function, enhancing the antiviral immune re-
sponse while preserving cardiomyocyte integrity. NFAT5 defi-
ciency also disrupts cytokine signalling, reducing levels of
IFNB1, CXCL10, and IL6, which weakens the host immune de-
fence. Furthermore, NFAT5S deficiency impairs stress granule
formation, compromising cardiomyocyte structural stability
through the reduction of plakophilin-2 levels, a key component
of desmosomal junctions. These findings position NFATS not
only as a stress regulator but also as a potential therapeutic tar-
get to mitigate CVB3-induced cardiomyopathy, offering a novel
perspective on cardioprotection during viral infections [313].

NFAT5 has emerged as a prosurvival molecule in cardio-
toxic environments, particularly under chemotherapy-induced
stress. For example, in the context of doxorubicin exposure,
known for its cardiotoxic effects, NFAT5 supports myocyte sur-
vival. Interestingly, doxorubicin enhances NFAT5 degradation
through a ubiquitin-independent pathway, suggesting that
NFAT5 acts as a protective regulator during chemotherapeutic
stress [129]. These results highlight the importance of NFAT5 in
cardiovascular disease pathophysiology.

Neurological diseases

Osmoadaptation in the brain is essential for maintaining cellular
and systemic homeostasis, particularly under conditions of fluc-
tuating osmotic pressure. This process involves specialized
mechanisms that enable brain cells to adapt to changes in 0s-
molality, protecting them from dehydration or swelling, both of
which can compromise cellular integrity and function. Regions
such as the hypothalamus, which regulate systemic osmolality
by controlling thirst, water intake, and hormonal responses, rely
heavily on osmoadaptation for survival. This section will explore
the role of NFAT5 in brain osmoadaptation and neuroinflamma-
tion, highlighting its potential therapeutic applications.

NFAT5 has emerged as a key therapeutic target in neuroin-
flammation and blood-brain barrier (BBB) protection. In a kainic
acid-induced seizure model, NFAT5 haplodeficiency resulted in
reduced BBB leakage, indicating its potential in preventing sei-
zure-induced neurovascular damage [314]. Similarly, NFAT5
haplodeficiency mitigates neuroinflammation in a high-fat
diet/streptozotocin-induced diabetic model, with a significant
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decrease inionized calcium-binding adapter molecule 1 (Iba-1)
immunoreactivity in the hippocampus compared to wild-type
controls [315]. This evidence underscores NFAT5S's protective
role in neuroinflammatory contexts. Additionally, NFAT5 expres-
sion was found to be increased in CHMES microglia subjected
to oxygen-glucose deprivation/reoxygenation, while the over-
expression of miR-374a-5p contributed to the polarization of mi-
croglia from a proinflammatory (M1) to an anti-inflammatory
(M2) state, indicating a complex regulation of NFAT5 in micro-
glial activation [316].

During hypoxia/ischemia, NFAT5 and HIF-1a inversely reg-
ulate NKCC1 expression in hippocampal neurons, suggesting
that these two molecules have complementary homeostatic
roles in maintaining tissue integrity under stress [317]. Further-
more, in a ratischemia/reperfusion injury model, NFAT5 overex-
pression promoted astrocyte survival, inhibited apoptosis, and
reduced histone acetylation, thereby supporting neurogenesis
and enhancing Nrf2 nuclear transport [318]. These findings
highlight the multifaceted role of NFAT5 in preserving neuronal
function and facilitating tissue remodelling during neuroinflam-
matory and ischemic conditions.

NFATS expression is also critical in the hypothalamus,
where itis present in pro-opiomelanocortin (POMC) neurons. Its
expression increases following systemic TNFo administration,
and NFAT5+/- mice exhibit a blunted proinflammatory response
to TNFa, characterized by inhibited POMC expression, reduced
anorexia, and hyperthermia. These findings underscore
NFATS's role as a mediator of systemic inflammation through
the hypothalamic axis [319]. In a mouse stroke model induced
by middle cerebral artery occlusion, NFATS was induced only in
the ipsilateral hemisphere, with peak expression observed 72
hours after cerebral lesion induction [320]. This suggests a sig-
nificant involvement of NFAT5 in ischemic brain injury. Moreo-
ver, under ischemic/hypoxic conditions, NFAT5S and its down-
stream SMIT gene product help protect neurons from oxidative
stress, further supporting its neuroprotective role [321].

NFAT5 is not considered an early-response gene, such as
Atf3, Verge, or Klf4, but rather functions as a delayed-response
TF. Immunohistochemistry studies show that NFAT5 translation
peaks 90 minutes after systemic hypertonicity, indicating that
preliminary signalling events precede its activation [322].
NFATS5 is also upregulated in OX-42-positive microglia during
transient middle cerebral artery occlusion (MCAO) and LPS in-
jection in the substantia nigra, which mirrors findings from pri-
mary microglia cultures exposed to LPS, IFNy, and IL4. These
conditions induce NFAT5 expression, emphasizing its involve-
ment in inflammatory microglial activation [323].

Additionally, NFAT5 plays a central role in age-related micro-
glial activation and cognitive decline. In aged mice, hippocam-
pal NFAT5 expression and microglial activation are significantly
elevated compared to young mice. Notably, NFAT5 haploinsuf-
ficiency reduces microglial activation and mitigates cognitive
impairment in middle-aged mice, positioning NFAT5 as a key
driver of neuroinflammatory changes associated with aging
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[324]. In Parkinson's disease, NFAT5 emerges as a potential
therapeutic target. LPS-stimulated BV-2 cells mimic Parkinson's
disease-associated microglial inflammation, with miR-29c¢ inhib-
iting NLRP3 inflammasome activation by targeting NFATS. This
suggests that NFAT5 contributes to the progression of Parkin-
son's disease [325], linking it to neuroinflammation and cogni-
tive decline [326].

Furthermore, hypernatremia, a condition characterized by
elevated sodium levels, is associated with central nervous sys-
tem dysfunction and can lead to demyelinating lesions, similar
to those observed in osmotic demyelination syndrome (ODS).
Both acute (6 or 24 hours) and chronic (over 7 days) hyper-
natremia conditions increase NFAT5-associated NOS2 expres-
sion and NO production in microglia, which is correlated with in-
tracellular calcium dynamics. These findings shed light on how
hypernatremia affects microglial activation and identify poten-
tial therapeutic targets for neuroinflammatory diseases such as
NFAT5 [327]. Onthe other hand, hyponatremia (low sodium lev-
els) also modulates NFAT5-dependent NO production in micro-
glia, contributing to neuronal dysfunctions observed during
rapid-to-chronic sodium corrections, such as in ODS [328].

Interestingly, the exposure of pregnant rats to hyperosmotic
solution results in increased levels of IL17, TNFa, NGF and
NFAT5 in the brains of their offspring, which is associated with
autism-like behaviors [329]. In a rat model of epilepsy, both
NFATS5 and the INcRNA X-inactive-specific transcript (XIST) are
found to be upregulated. XIST functions as a sponge for miR-
29c-3p, which normally inhibits NFATS. By sequestering miR-
29c-3p, XIST prevents the regulation of NFAT5, leading to in-
creased inflammation and glutamate accumulation in astro-
cytes [330]. NFATS is also significantly upregulated in an oxy-
gen-glucose deprivation/reoxygenation astrocyte model, with
this upregulation mediated by circCELF1, highlighting its in-
volvement in ischemic brain injury [331].

In infants with severely abnormal neurodevelopment,
NFATS5 transcript levels are significantly elevated, which corre-
lates with poor outcomes in neonatal hypoxic-ischemic enceph-
alopathy. This suggests that NFAT5 could serve as a biomarker
for neurodevelopmental impairment, offering potential for early
detection and intervention strategies [332]. Additionally, NFAT5
is implicated in stress-related disorders. A strong correlation be-
tween Cacnac1C and NFAT5 has been observed in the amyg-
dala of both mice and humans experiencing chronic stress, po-
sitioning NFAT5 as a potential therapeutic target for psychiatric
conditions associated with chronic stress [333]. Furthermore,
NFAT5 plays a critical role in bupivacaine (BUP)-induced neuro-
toxicity. Following BUP exposure, levels of INcRNA OIP5-AS1
and NFATS decrease, while miR-34b levels increase, leading to
reduced neuronal proliferation and heightened apoptosis in
dorsalroot ganglion neurons. OIP5-AS1 acts as a spacer for miR-
34Db, enabling upregulation of NFATSE. The addition of NFATS
counteracts the negative effects of miR-34b, promoting neu-
ronal survival and highlighting its therapeutic potential in neuro-
toxicity scenarios [334]. This further supports NFAT5 role in
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modulating neuroinflammation in various neurological condi-
tions (Figure 3).

NFAT5 regulation and therapeutic approaches

After exploring the different NFAT5 activators, this section shifts
focus to NFATS inhibitors, providing a detailed analysis of the
tightly controlled regulatory mechanisms that modulate its acti-
vation. Understanding these inhibitors is essential for uncover-
ing potential therapeutic strategies that could target NFAT5 in
various diseases.

Conjugated linoleic acid has been shown to downregulate
NFATS expression in subcutaneous abdominal adipose tissue
after 4 weeks of supplementation. This suggests a negative reg-
ulatory role of NFATS in adipose metabolism and obesity, indi-
cating its involvement in metabolic processes beyond its tradi-
tional role in osmotic stress response [335]. Similarly, the activa-
tion of AMPK suppresses NFAT5 in renal medullary interstitial
cells (RMICs) under hyperosmotic stress, leading to reduced
NFxB nuclear translocation and COX-2 expression, which pro-
motes apoptosis. This underscores the crucial role of NFAT5S in
regulating renal cell survival under stress conditions [336]. Fur-
thermore, Metformin, a widely used drug for T2DM, inhibits
NFAT5 under hypertonic conditions, thereby reducing the ex-
pression of osmoprotective genes like AR and BGT 1. This raises
concerns for DM patients with renal disease, as NFAT5 activity
is critical for cellular adaptation to osmotic stress [337]. Dexme-
detomidine, an «2-adrenergic receptor agonist, also inhibits
both NFAT5 and SIRT protein expression in a diabetic hypergly-
cemia-ischemia/reperfusion model, indirectly supporting
NFATS's role in diabetes-associated neurovascular damage
(64].

In addition to these pharmacological inhibitors, microRNAs
also play a pivotal role in modulating NFATS expression. For in-
stance, miR-568 suppresses NFATS in CD4+ T cells and Treg
cells, leading to reduced activation (CD25, CD69, CD154), de-
creased IL2 production, and diminished T-cell proliferation. This
highlights a direct role for NFAT5 in lymphocyte regulation [338].
Likewise, miR-10b-5p inhibits NFAT5 by targeting its 3-UTR re-
gion in C2C12 myoblasts, impairing cell differentiation, which
points to NFAT5's involvement in muscle cell maturation [339].
Similarly, Roguin 1 inhibits NFAT5 via translational inhibition in
MEFs and CD4+ T cells [340].

NFATS induction and NFAT5-dependent transcription are
inhibited by cyclosporine A and FK506 in a TCR-dependent
manner in T lymphocytes. However, their induction by hyperos-
motic stimuli is not blocked by calcineurin. Moreover, osmotic
stress response genes, such as AR, are not induced upon T-cell
activation, suggesting distinct mechanisms regulating NFAT5
transcriptional functions [148]. Additionally, B lymphocyte-in-
duced maturation protein-1 (Blimp-1) represses NFAT5 activity
during cell maturation in corneocytes and in morphologically
abnormal cornified layers, suggesting its role in skin physiology
[116]. Glycerol has also been shown to reduce NFAT5 and IL18
expression in HaCaT keratinocytes under hypertonic stress,
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suggesting a cytoprotective role by modulating inflammatory
responses in the skin [341].

NFAT5 is not only involved in osmotic stress but also in can-
cerbiology [257]. It plays a critical role in tumor progression, me-
tastasis, and recurrence, as well as prognosis following surgical
resection in NSCLC [269, 342]. miR-194 binds to the 3-UTR re-
gion of NFATS5, reducing NFATS expression and protein abun-
dance in high-glucose-induced NSCLC cells, linking metabolic
dysregulation to tumor progression [343]. In a similar context,
miR-211, a known tumor suppressor in metastatic melanoma,
has been described as a suppressor of NFAT5 [344]. In vivo
studies using a C57BL/6 mouse model injected with B16BL6-
NFAT5-knockdown melanoma cells demonstrated weak mela-
noma tumor growth and a decrease in lung and liver nodule for-
mation, further supporting the role of NFAT5 in melanoma
growth and metastasis [345].

Additionally, urea pre-treatment has been found to inhibit
hypertonicity-induced changes in the expression of the physio-
logical effector gene AR, highlighting a molecular mechanism
through which urea modulates tonicity-dependent signalling
and underscores the role of NFAT5 in regulating gene transcrip-
tion [68]. The small molecules KRN2 and KRN5, which exhibit
high oral bioavailability and metabolic stability, have been
shown to ameliorate experimentally induced arthritis in mice
without serious adverse effects, decreasing proinflammatory cy-
tokine production. Notably, orally administered KRN5 was more
effective than methotrexate, a commonly used antirheumatic
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drug, demonstrating better potency and safety. These findings
suggest that KRN2 and KRN5 could be promising therapeutic
agents for the treatment of chronic arthritis [346].

At the molecular level, NFAT5 is regulated by phosphoryla-
tion, with phosphatases such as SHP-1 interacting directly with
Thr143 of the NFATS regulatory site, inhibiting its nuclear trans-
location [347]. A high-salt environment attenuates SHP-1 inhibi-
tory effect on NFAT5 activation through the inhibition of protein
targeting to glycogen (PTG), revealing the regulatory mecha-
nism of SHP1 on NFAT5 under hypertonic conditions [348]. Fur-
thermore, lipid droplet-associated protein fat-specific protein-27
(FSP27) inhibits NFAT5 nuclear translocation and represses
CCL2 expression, suggesting animportant role of NFAT5S in lipid
metabolism and inflammation, beyond its osmoprotective func-
tion [349]. Gonadotropin-releasing hormone (GnRH) agonists
inhibit NFAT5 expression in leiomyoma cells at pharmacologi-
cal doses [350]. Similarly, the selective progesterone receptor
modulator ulipristal acetate (UPA) inhibits NFAT5 concomitantly
with a decrease in versican, aggrecan, and brevican proteogly-
cans, leading to a significantdecrease in leiomyoma tissue [351].

Similarly, the transcriptional coactivator TAZ, highly ex-
pressed in the kidney, inhibits NFATS activity through tyrosine
phosphorylation, suggesting another layer of regulatory control
in kidney physiology [352]. Additionally, NFAT5 is a target of
miR-223, whose upregulation inhibits platelet-derived growth
factor-BB (PDGF-BB)-induced motility and proliferation of hu-
man aortic smooth cells [353]. In addition, miR-96-5p
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upregulation inhibits angiotensin-stimulated VSMC proliferation
and migration by targeting NFAT5 [354].

Exosomes derived from miR-146a-bp-enriched bone mar-
row mesenchymal stem cells (MSCs) inhibit NFAT5 and M1 po-
larization of microglia in an intracerebral haemorrhage (ICH)
model in rats, accompanied by reductions in CCL2, COX2, and
iNOS levels, suggesting that NFAT5 is a potential target for ICH
treatment [355]. Moreover, exosomes derived from MSCs inhibit
Th17 polarization through NFATS inhibition via miR-1246 and
alleviate inflammation in periodontitis [356].

Intermittent hypoxia and reoxygenation, processes related
to severe sleep apnoea, lead to a decrease in miR-21-5p and
miR-23-3p expression in a TLR4-dependent manner in PBMCs
from patients with obstructive sleep apnea. This is associated
with increased cytotoxicity, apoptosis, and elevated NFAT5
gene expression, among other hypoxia- and proinflammatory-
related genes. These effects are reduced by miR-21-5p mimic
transfection [357].

Computational approaches have also contributed to identi-
fying potential NFAT5S inhibitors. For example, molecular dy-
namics simulations have pinpointed a peptide that may inhibit
NFAT5 dimerization atits DNA-binding domain, although further
validation in biological and clinical settings is needed [358]. Ad-
ditionally, PARP-1 and heat shock protein 90 (HSPQ0) have been
shown to modulate NFATS expression in the HEK293 cell line,
with PARP-1 rescuing NFAT5 transcriptional activity and HSP90
enhancing its activity and maintaining protein stability [359].
These findings point to a complex regulatory network control-
ling NFAT5 expression. Computational analysis also revealed
putative quadruplex-forming sequences in TF binding sites, in-
cluding NFAT5, suggesting that G-quadruplex formation could
influence NFATS5's ability to regulate gene transcription [360].
NFATS5 regulation involves post-translational modifications, pro-
tein-protein interactions, and subcellular localization. Its nuclear
translocation is mediated by specific signalling pathways and
nuclear transport proteins.

NFATS is tightly regulated at the transcriptional level by the
RNA helicases DDX5 and DDX17, which enhance the inclusion
of NFAT5 exon b. This exon contains a premature translation ter-
mination codon, leading to the degradation of NFAT5 mRNA via
the nonsense-mediated decay (NMD) pathway and ultimately
reducing NFATS5 protein levels [287]. Additionally, NKCC2A reg-
ulates NFATS expression and transcriptional activity in mTAL
cells under hypertonic conditions [361]. In these cells, an inflam-
matory response triggered by elevated urinary TNFa under hy-
perosmolar stress is coordinated by NFAT5 and NKCC2A, high-
lighting their interplay in osmotic regulation and inflammation
[362]. NFAT5 nucleocytoplasmic trafficking is controlled by ca-
seinkinase 1 (CK1), which phosphorylates NFAT5 at Ser 158, fol-
lowed by phosphorylation at Ser155, as observed in Hela cells
[363].

At the post-transcriptional level, NFAT5S expression is further
regulated by various non-coding RNAs. miR-31 downregulates
NFATS5, increasing NP cell viability and reducing cell death,
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which is associated with protection against intervertebral disc
degeneration [364]. Similarly, the IncRNA MIAT regulates
NFAT5 by sponging miR-613 in LPS-stimulated microglia [365].
Additionally, miR-20b inhibits NFAT5 and inactivates the TLR
signalling pathway by preventing TLR2-TLR4 dimer formation,
thereby reducing inflammation in alveolar type Il epithelial cells
following M. tuberculosis infection [366]. These findings high-
light the diverse molecular mechanisms thatregulate NFAT5 ex-
pression and activity. The ability to modulate NFAT5 levels
through these pathways presents potential therapeutic strate-
gies for conditions associated with NFAT5 overactivation (Fig-
ure 4).

CONCLUSION

NFATS, a versatile TF, is an important regulator of cellular re-
sponses to osmotic stress and other stimuli. It plays a critical role
in maintaining cellular homeostasis by activating genes in-
volved in osmoprotection, inflammation and cell survival. As a
protector during hyperosmotic changes, NFAT5 regulates the
expression of genes involved in osmoprotection, such as aqua-
porins, osmolyte transporters and heat shock proteins. The nu-
merous triggers include osmotic stress such as changes in ex-
tracellular osmolality, inflammatory stimuli such as various cyto-
kines and other inflammatory signals, and mechanical forces as
they act on cells and tissues. In inflammation, NFAT5 is able to
induce the expression of pro-inflammatory cytokines and thus
contribute to the inflammatory response. This TF plays an es-
sential role in proliferation and differentiation and regulates cell
proliferation, differentiation and migration, processes that con-
trol tissue development and repair. However, its role in cancer
progression, tumor growth and metastasis has been extensively
studied. Understanding the intricate mechanisms of NFAT5 ac-
tivation and its downstream targets offers potential therapeutic
opportunities. Targeting NFATS could offer new strategies for
the treatment of various diseases, including kidney disease, au-
toimmune diseases, diabetes, blood disorders, cancer and brain
diseases.
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