Advance online publication:

This section includes articles accepted for publication in Cell Stress, which have not been released in a regular issue, yet. Please note that the PDF versions of advance publication articles are generally paginated starting with page 1. This does not correspond to the final pagination upon release of the issue it will appear in.


The sensing of mitochondrial DAMPs by non-immune cells

Aida Rodríguez-Nuevo and Antonio Zorzano

Show Abstract

Mitochondria are the source of damage-associated molecular patterns (DAMPs), which are molecules that play a key modulatory role in immune cells. These molecules include proteins and peptides, such as N-formyl peptides and TFAM, as well as lipids, and metabolites such as cardiolipin, succinate and ATP, and also mitochondrial DNA (mtDNA). Recent data indicate that somatic cells sense mitochondrial DAMPs and trigger protective mechanisms in response to these signals. In this review we focus on the well-described effects of mitochondrial DAMPs on immune cells and also how these molecules induce immunogenic responses in non-immune cells. Special attention will be paid to the response to mtDNA.

PDF | Published online: 23/05/2019 | In press

Biology and clinical relevance of EpCAM

Laura Keller, Stefan Werner and Klaus Pantel

Show Abstract

Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein primarily known to mediate homotypic cell contacts in epithelia tissues. Because EpCAM expression is limited to normal and malignant epithelia, it has been used as diagnostic marker for the detection of carcinoma cells in mesenchymal organs such as blood, bone marrow or lymph nodes. In particular, the detection and molecular characterization of EpCAM-positive circulating tumor cells (CTCs) in the blood of carcinoma patients has gained considerable interest over the past ten years. EpCAM is primarily considered as an adhesion molecule, but recent studies have shown diverse biological functions including regulation of cell proliferation and cancer stemness. In this review, we summarize the current knowledge on the biological properties of EpCAM with emphasis on mechanisms involved in cancer progression and discuss the clinical implications of these findings for the clinical use of EpCAM as a diagnostic marker.

PDF | Published online: 21/05/2019 | In press

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this. Please refer to our "privacy statement" and our "terms of use" for further information.